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1 The Polyakov Action

1.1 The Relativistic point particle

We begin our discussion with the model of a point particle that is subject to relativistic
effects. Such a particle traces out a line in spacetime known as the worldline. We know
that the length of this world line is given by the equation

𝑑𝑠2 = −𝑑𝑋𝜇𝑔𝜇𝜈𝑑𝑋𝜈 (1)

Where 𝜇 and 𝜈 = 0, 1, 2, ..., 𝐷. D is the dimension of spacetime 𝑔𝜇𝜈 is the spacetime
metric tensor and ’ds’ is the proper length. We assume the String Theory convention
for the metric 𝜂 = (− + + + ...+) The simplest lorentz invarient action we can write for
this particle would be proportional to the proper length

𝑆 = −𝑚𝑐 ∫ 𝑑𝑠 (2)

Where ’mc’ is here for dimensional purposes. We can then write

𝑆 = −𝑚𝑐 ∫ √−𝑑𝑋𝜇𝑔𝜇𝜈𝑑𝑋𝜈

= −𝑚𝑐 ∫ √−𝑑𝑋𝜇

𝑑𝑡 𝑑𝑡𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝑡 𝑑𝑡
(3)

If we assume that spacetime is flat then we write

𝑆 = −𝑚𝑐 ∫ 𝑑𝑡√−𝑑𝑋𝜇

𝑑𝑡 𝜂𝜇𝜈
𝑑𝑋𝜈

𝑑𝑡

= −𝑚𝑐 ∫ 𝑑𝑡√−𝑑𝑋𝜇

𝑑𝑡
𝑑𝑋𝜇
𝑑𝑡

(4)

Now if we contract the 0th term we can simply the action to the following quantity

= −𝑚𝑐2 ∫ 𝑑𝑡√1 − 1
𝑐2

𝑑𝑋𝑖

𝑑𝑡
𝑑𝑋𝑖
𝑑𝑡

= −𝑚𝑐2 ∫ 𝑑𝑡√1 − 𝑣2

𝑐2

(5)
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Where 𝑣2 is the D-dimensional velocity squared. We can easily show that this reduces
to the classical lagrangian in the non-relativitic limit.

𝐿 = −𝑚𝑐2√1 − 𝑣2

𝑐2

≈ −𝑚𝑐2(1 − 1
2

𝑣2

𝑐2 ) = 1
2𝑚𝑣2 + constant

(6)

So it reduces to the classical result in the non relativitic limit.

1.2 World Sheets and Nambu–Goto action

Now let us consider modeling a relativistic string. The simplest action we can construct
would be proportional to the proper area traced out in spacetime by the string. This is
called theNambu-Goto action. Wewill begin by considering the proper area in General
Relativity.

In General Relativity the proper area is given by the corresponding formula.

𝐴 = ∫ 𝑑𝜏𝑑𝜎√−det(ℎ𝑎𝑏) (7)

Where ℎ𝑎𝑏 is the induced metric of the surface. Here we have chosen Tau and sigma as
parameterizations. Tau does not necessarily represent the proper time. Now there are
a few caveats we need to take care of later. First lets motivate this result by consider
breaking up the ’world sheet’ into rectangles. Seeing howwe are working with vectors,
it makes sense to break it up into parallelograms by considering the identity in linear
algebra.

𝑑𝐴 = |𝑑𝑣1 × 𝑑𝑣2| = |𝑑𝑣1||𝑑𝑣2|| sin(𝜃)| = 𝑑𝑣1||𝑑𝑣2||√1 − cos2(𝜃)| (8)

𝑑𝐴 = √|𝑑𝑣1|2|𝑑𝑣2|2 − |𝑑𝑣1|2|𝑑𝑣2|2 cos2(𝜃)| (9)

Now we know that dv1 and dv2 should be in different directions. We shall write this
in terms of the tensor function 𝑋𝜇(𝜏, 𝜎) that represents the parametrized world-sheet.

4



Wewill assign the value dv1 to 𝑑𝑋𝜇

𝑑𝜏 𝑑𝜏 and dv2 to 𝑑𝑋𝜇

𝑑𝜎 𝑑𝜎 where sigma and tau are used
to parametrize the world sheet. Now this prodcues the following result

𝑑𝐴 = √(𝑑𝜏2 𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏 )(𝑑𝜎2 𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎 ) − 𝑑𝜏2𝑑𝜎2(𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎 )2

= 𝑑𝜏𝑑𝜎√(𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏 )(𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎 ) − (𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎 )2

(10)

Now, if we believe equation (7) then we should be able to express equation (10) as the
determinant of some metric. By inspection we can write an induced metric ’h’ as the
following.

ℎ𝛼𝛽 = ⎛⎜⎜⎜
⎝

𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏
𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎
𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎
𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎

⎞⎟⎟⎟
⎠

= 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈𝑔𝜇𝜈

= 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

(11)

And all together the Nambu-Goto action becomes.

𝑆 = −𝑇 ∫ 𝑑𝜏𝑑𝜎√−det(ℎ𝛼𝛽)

𝑆 = −𝑇 ∫ 𝑑𝜏𝑑𝜎√−det(𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇)
(12)

Where the scaler ’-T’ is introduced for dimensional purposes. And the negative inside
the square root comes as a consequence of the Pseudo-Riemannian spacewhich ensures
the determinant will be negative.

Equation (11) is the known as the induced metric. It shouldn’t come as a surprise
that we are now working with two metrics, since our strings are manifolds themselves.
It also shouldn’t be a surprise that the metric can be expressed as a 2x2 matrix since our
world-sheet traces a two dimensional surface. The second equal sign in equation (11)
can be easily checked to be true.

Now there is actually a problemwith this action. The problems stems from renormal-
ization, namely, the square root makes renomrlaization difficult. Correcting this prob-
lem requires us to rewrite the Nambu-Goto action using what is known as the auxillary
world sheet metric. It is a metric that classically reduces the action to the Nambu-Goto
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action. This new action in terms of the auxiliary world sheet metric is known as the
Polyakov action which is given by

𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (13)

Where the 𝛾𝛼𝛽 represents the auxiliary world sheet metric with both indices raised and
the 𝛾 = det(𝛾𝛼𝛽). This corrects the issue and makes the theory renormalizable. The
scaler at the begining is there for dimensional purposes.

We now wish to show that this indeed reduces to equation (12) at the classical level.
To show this we will find variation of the action with respect to the inverse world-sheet
metric 𝛾𝛼𝛽

𝛿𝑆
𝛿𝛾𝛼𝛽 = 0 (14)

To accomplish this, we begin by finding the variation of equation (13)

𝛿𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 − 1

4𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎 (−𝛾)
1
2 𝛿(𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

(15)

Using the following identity

𝛿𝛾 = −𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽 (16)

Which in our case implies that following relationship

𝛿√−𝛾 = −1
2√−𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽 (17)

Going back to equation (15) its easy to see that

𝛿𝑆 = 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎 1

2√−𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎 (−𝛾)

1
2 𝛿(𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

= 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿𝛾𝛼𝛽 1

2√−𝛾𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿𝛾𝛼𝛽(−𝛾)

1
2 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

= 0
(18)
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Dividing equation (18) by 𝛿𝛾𝛼𝛽 and canceling out the constants gives the equation of
motion for themetric. In otherwords, it’s easy to see that 𝛿𝑆

𝛿𝛾𝛼𝛽 = 0 implies the following
relationship.

1
2𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 = 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (19)

From here we can take the negative square root of the determinant from both sides wrt
to the alpha and beta tensor,

1
2(−𝛾)

1
2 𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 = √−det(𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇) (20)

But the right side is just the integrand of the Nambu-Goto action and the left side is the
integrand of the Polyakov action. Therefore the equation of motion for the world sheet
metric 𝛾𝛼𝛽 implies the Nambu-Goto action. QED.

Now notice that we never explicitly defined a value for the world-sheet metric 𝛾𝛼𝛽.
This is to preserve the symmetries in the Polyakov action. Namely, these symmetries
allows us to perform gauge fixing with the only requirement being that equation (19)
is satisfied. We will now explore these symmetries in the next section to see which
quantities we are allowed to gauge fix.

1.3 Symmetries in the Polyakov action

We would now like to talk about the symmetries in the Polyakov action

𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (21)

...forwhich there are a lot. However, for now, lets restrict our analysis to that ofMinkowski
space. The Polyakov action is invarient under the following transformations
Poincare Transformation

𝑋′𝜇 = 𝛬𝜇
𝜈𝑋𝜈 + 𝑎𝜇 (22)

𝛿𝛾𝛼𝛽 = 0 (23)
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Where 𝛬 is a Lorentz transformation and a 𝑎𝜇 is a translation. Poincare invariance is a
global symmetry in the action which implies it cannot be used for gauge fixing.
Diffeomorphism invariance

𝑋′𝜇(𝜏′, 𝜎 ′) = 𝑋𝜇(𝜏, 𝜎) (24)

𝜕𝜎 ′𝑐

𝜕𝜎𝑎
𝜕𝜎 ′𝑑

𝜕𝜎𝑏 𝛾′
𝑐𝑑(𝜏′, 𝜎 ′) = 𝛾𝑎𝑏(𝜏, 𝜎) (25)

for some new choice of coordinates 𝜎 ′𝑎(𝜏, 𝜎). Equation (24) is also known as reparam-
eterization invariance. This is an very important property of string theory so be sure
to understand it. While equation (25) is nothing more than the tensor transformation
law. Diffeomorphism invariance is a local symmetry which implies it allows for gauge
fixing.
Weyl invariance

𝑋′𝜇(𝜏, 𝜎) = 𝑋𝜇(𝜏, 𝜎) (26)

𝛾′
𝑎𝑏(𝜏, 𝜎) = 𝑒2𝜔(𝜏,𝜎)𝛾𝑎𝑏(𝜏, 𝜎) (27)

which holds for any 𝜔(𝜏, 𝜎) . This is also a local gauge symmetry, which implies that
it can be used for gauge fixing.

This concludes the relevant symmetries in the Polyakov action. While in the future,
wewill talkmore about the implication of these symmetries and treat themasmore fun-
damental then the Polyakov action, for now they are simply symmetries in the Polyakov
action.

1.4 Equations of motion and Boundary conditions

The goal of this section is find the equation of motion for 𝑋𝜇 in the Polyakov action.

𝑆[𝑋𝜇, 𝛾𝛼𝛽] = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (28)

We will now take the variation wrt to 𝑋𝜇. Where the goal is to find equation of motion
by demanding that

𝛿𝑆
𝛿𝑋𝜇 = 0 (29)
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Taking the variation

𝛿𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 − 1

4𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎 (−𝛾)
1
2 (𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝛿𝑋𝜇

(30)
Where we used the easy to show identity 𝛿𝜕𝑎𝑋𝜇 = 𝜕𝑎𝛿𝑋𝜇. By relabeling the indices
we can combine them into a singal integral. (Specifically, we use the symmetry in the
metric tensor)

𝛿𝑆 = − 1
2𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 (31)

Now from here we manipulate the integrand using the identity

(−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 = 𝜕𝛼((−𝛾)

1
2 𝛾𝛼𝛽𝛿𝑋𝜇𝜕𝛽𝑋𝜇) − 𝛿𝑋𝜇𝜕𝛼((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇) (32)

Where this can be understood to be an integration by parts. Note that distributing the
derivatives on the right side will equal the left side. Now, the term

𝜕𝛼((−𝛾)
1
2 𝛾𝛼𝛽𝛿𝑋𝜇𝜕𝛽𝑋𝜇) = 0 (33)

is usually understood to vanish due to boundary conditions we will impose in the next
section. We will just assume it to be zero for now

From here, we are left with the action (after dividing by 𝛿𝑋𝜇)

𝛿𝑆
𝛿𝑋𝜇 = 1

2𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎𝜕𝛼((−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇) = 0 (34)

The equation of motion is understood to mean the following equations

𝜕𝛼(−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇 = 0 (35)

Along with
(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝜕𝛽𝑋𝜇 = (−𝛾)

1
2 𝜕𝛼𝜕𝛼𝑋𝜇 = 0

= (−𝛾)
1
2 𝜕𝛼𝜕𝛼𝑋𝜈𝜂𝜇𝜈 = 𝜂𝜇𝜈 ∗ 0

= (−𝛾)
1
2 𝜕𝛼𝜕𝛼𝑋𝜇 = (−𝛾)

1
2 ∇2𝑋𝜇 = 0

(36)

9



This along with the previous section complete the equations of motion for the Polyakov
action at this state. Its worth noting that there are a few terms that can be added to the
Polyakov action that, although break Poincare invariance, are worth exploring. We will
discuss these later.

Lets now talk about boundary conditions. There are two types of strings that are con-
structed from various boundary conditions. The two types are open strings and closed
strings. Intuitively, we can think of closed strings as being topologically a circle and an
open string as being topologically a line interval. Let us now discuss these boundary
conditions.

For these conditions wewill choose a parametrization for 𝜎 such that it lies inside the
interval 0 ≤ 𝜎 ≤ 𝜋. This is an arbritrary choice that is done for the sake of simplifying
the analysis of the boundary conditions.
Closed String

𝑋𝜇(𝜏, 𝜎) = 𝑋(𝜏, 𝜎 + 𝜋) (37)

This is a period condition that simply ensures the string is closed everywhere.
Open String with Neumann boundary conditions

𝜕𝜎𝑋𝜇 = 0 At 𝜎 = 0, 𝜋 (Generally) (38)

Now, under most gauge fixes we can write 𝜕𝜎 instead of 𝜕𝜎 but writing this way, its
clearer that the boundary condition we assumed was zero is indeed zero. The general
consequence of this boundary condition is that the component of momentum normal
to the worldsheet vanishes at the boundary.
Open String with Dirichlet Boundary condition

𝑋𝜇|𝜎=0 = 𝑋𝜇
0 (39)

𝑋𝜇|𝜎=𝜋 = 𝑋𝜇
𝜋 (40)
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Where 𝑋𝜇
0 and 𝑋𝜇

𝜋 are constants. This condition applies for 𝜇 = 1, 2, 3..𝐷 − 𝑝 − 1 where
d is the dimension of the theoy p is a p-dimensional subspace of the theory. We will
talk more about Dp branes later.

1.5 Lightcone coordinates

The purpose of this section construct an easier set of coordintates to solve the equations
of motion. These are known as light cone coordinates and they are merlely a new set
of coordinates to makes solving our theory easier. In General relativity. we define the
light cone component for any vector 𝑎𝜇 as the following

𝑎+ ≡ 1
√2

(𝑎0 + 𝑎1) (41)

and
𝑎− ≡ 1

√2
(𝑎0 − 𝑎1) (42)

we let the rest of the indices run from i = 2,...,D

𝑎𝑖 runs from i = 2, . . . , D (43)

It’s really just a change of basis in flat spacetime. We can imagine that, internally, the
basis looks something like this

𝑒𝜇 = (𝑎−, 𝑎+, 𝑎𝑖) (44)

We can also define coordinates with ’lowered indices’ as the following

𝑎+ ≡ −𝑎− (45)

and
𝑎− ≡ −𝑎+ (46)

These new coordinates are require us to re implement contractions which look like this
in the new basis

𝑎𝜇𝑏𝜇 = −𝑎+𝑏− − 𝑎−𝑏+ + 𝑎𝑖𝑏𝑖

= 𝑎−𝑏− + 𝑎+𝑏+ + 𝑎𝑖𝑏𝑖
(47)
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Where we choose metric such that 𝑎𝑖 = 𝑎𝑖

Back to string theory, we introduce world-sheet light cone coordinates defined by

𝜎± = 𝜏 ± 𝜎 and 𝜕± = 1
2(𝜕𝜏 ± 𝜕𝜎) (48)

Along with the metric
⎛⎜⎜⎜
⎝

𝜂++ 𝜂+−

𝜂−+ 𝜂−−

⎞⎟⎟⎟
⎠

= −1
2

⎛⎜⎜⎜
⎝

0 1
1 0

⎞⎟⎟⎟
⎠

(49)

1.6 Lightcone gauge

The quickest way to get familiar with certain results in string theory is using the ”light-
cone gauge” as our fixing condition. As discussed earlier, the Polyakov action has a lot
of symmetries that allow us to choose a convenient gauge.

Lets first look at the case for a point particle instead of the string world-sheet. The
point particle action is given by

𝑆 = 1
2 ∫ 𝑑𝜏(𝜂−1𝑋̇𝜇𝑋̇𝜇 − 𝜂𝑚2) (50)

Now the cannonical momentum is given by

𝑝𝜇 = 𝜕𝐿
𝜕𝑋̇𝜇

= 𝜕
𝜕𝑋̇𝜇

1
2(𝜂−1𝑋̇𝜈𝑋̇𝜈 − 𝜂𝑚2)

= 𝜂−1𝑋̇𝜇

(51)

Note that the dummy indicies that are being contracted were swapped in the second
line to prevent the ambiguous notation (3 indices).

We now wish to construct Hamilonian which is usually done as follows

𝐻 = 𝑝𝜇𝑋̇𝜇 − 𝐿

= 𝜂−1𝑋̇𝜇𝑋̇𝜇 − 𝐿
(52)
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Alright if we wish to carry out this process in lightcone coordinates, it can be done by
first transforming (50) into lightcone coordinates. Using the identity. First lets gauge
fix our parametrization. Specifically let

𝑋+(𝜏) = 𝜏 Where naturally 𝑋̇+(𝜏) = 1 (53)

This lets us treat 𝑋+ as a sort of timelike variable. Now, we can use the contraction
identity from the previous section

𝑋̇𝜇𝑋̇𝜇 = −𝑋̇+𝑋̇− − 𝑋̇−𝑋̇+ + 𝑋̇𝑖𝑋̇𝑖 (54)

To rewrite the action like this

𝑆 = 1
2 ∫ 𝑑𝜏(𝜂−1𝑋̇𝜇𝑋̇𝜇 − 𝜂𝑚2)

= 1
2 ∫ 𝑑𝜏(𝜂−1(−𝑋̇+𝑋̇− − 𝑋̇−𝑋̇+ + 𝑋̇𝑖𝑋̇𝑖) − 𝜂𝑚2)

= 1
2 ∫ 𝑑𝜏(−𝜂−12𝑋̇− + 𝜂−1𝑋̇𝑖𝑋̇𝑖 − 𝜂𝑚2)

(55)

Now we can find the canonical momentum

𝑝− = 𝜕𝐿
𝜕𝑋̇− = −𝜂−1

𝑝+ = 𝜕𝐿
𝜕𝑋̇+ = 0

𝑝𝑖 = 𝜕𝐿
𝜕𝑋̇𝑖 = 𝜂−1𝑋𝑖

(56)

Which allows us to contruct the Hamiltonian like follows

𝐻 = 𝑝𝜇𝑋̇𝜇 − 𝐿 = 𝑝−𝑋̇− + 𝑝𝑖𝑋̇𝑖 − 𝐿 (57)

Now it’s easy to see that we can rewrite this as the following

𝐻 = 𝑝𝑖𝑝𝑖 + 𝑚2

2𝑝+ (58)
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We finish of this example by quantizing the theory. We accomplish this by imposing
the following commutator relations

[𝑝𝑖, 𝑋𝑗] = −𝑖𝛿 𝑗
𝑖

[𝑝−, 𝑋−] = −𝑖
(59)

Where the variables 𝑝𝑖, 𝑋𝑗, 𝑝−, 𝑋− are now promoted to operators. This completes the
quantization procedure for the relativistic point particle.

We shall now turn to the Polyakov action and perform the same procedure.

𝑆[𝑋𝜇, 𝛾𝛼𝛽] = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (60)

Now we want to impose a similar gauge fixing condition. The specific conditions will
be

𝑋+ = 𝜏

𝜕𝜎𝛾𝜎𝜎 = 0

det(𝛾𝑎𝑏) = −1

(61)

Wewill also fix the parameters −∞ < 𝜏 < ∞ and 0 ≤ 𝜎 ≤ 𝓁 this suffices to gauge fix the
symmetries in the Polyakov action. Now we can use the second condition in (103) to
determine that 𝛾𝜎𝜎 is a function of 𝜏 only 𝛾𝜎𝜎(𝜏). Now we can easily find the inverse
of the metric 𝛾𝑎𝑏 by invoking the result from general relativity. For any 2x2 metric 𝑔𝛼𝛽

the inverse is given by

𝑔𝛼𝛽 = 1
det(𝑔)

⎛⎜⎜⎜
⎝

𝑔11 −𝑔01

−𝑔01 𝑔00

⎞⎟⎟⎟
⎠

(62)

Now back to string theory, we can use this formula to find the inverse of the world-
sheet metric.

⎛⎜⎜⎜
⎝

𝛾𝜏𝜏 𝛾𝜏𝜎

𝛾𝜎𝜏 𝛾𝜎𝜎
⎞⎟⎟⎟
⎠

= ⎛⎜⎜⎜
⎝

−𝛾𝜎𝜎(𝜏) 𝛾𝜏𝜎(𝜏, 𝜎)
𝛾𝜏𝜎(𝜏, 𝜎) −𝛾𝜏𝜏(𝜏, 𝜎)

⎞⎟⎟⎟
⎠

(63)
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Using the third gauge fixing condition in (103)

det(𝛾𝑎𝑏) = −1

𝛾𝜏𝜏(𝜏, 𝜎)𝛾𝜎𝜎(𝜏) − 𝛾2
𝜏𝜎(𝜏, 𝜎) = −1

𝛾𝜏𝜏(𝜏, 𝜎) = 1
𝛾𝜎𝜎(𝜏)(−1 + 𝛾2

𝜏𝜎)

𝛾𝑎𝑏 = ⎛⎜⎜⎜
⎝

−𝛾𝜎𝜎(𝜏) 𝛾𝜏𝜎(𝜏, 𝜎)
𝛾𝜏𝜎(𝜏, 𝜎) 1

𝛾𝜎𝜎(𝜏)(1 − 𝛾2
𝜏𝜎(𝜏, 𝜎))

⎞⎟⎟⎟
⎠

(64)

Now we wish to transform the Polyakov action into lightcone coordinates.

𝑆[𝑋𝜇, 𝛾𝛼𝛽] = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (65)

Start by defining

𝑋′ = 𝜕𝑋𝜇

𝜕𝜎
𝑋̇ = 𝜕𝑋𝜇

𝜕𝜏

(66)

Now rewriting the lagrangian in light cone coordinates and using (47) to we can write.

𝐿 = − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎(𝛾𝜏𝜏𝜕𝜏𝑋𝜇𝜕𝜏𝑋𝜇 + 𝛾𝜏𝜎𝜕𝜏𝑋𝜇𝜕𝜎𝑋𝜇 + 𝛾𝜎𝜏𝜕𝜎𝑋𝜇𝜕𝜏𝑋𝜇 + 𝛾𝜎𝜎𝜕𝜎𝑋𝜇𝜕𝜎𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎(−𝛾𝜎𝜎(𝜏)𝜕𝜏𝑋𝜇𝜕𝜏𝑋𝜇 + 2𝛾𝜏𝜎(𝜏, 𝜎)𝜕𝜏𝑋𝜇𝜕𝜎𝑋𝜇

+ 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝜇𝜕𝜎𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎(𝛾𝜎𝜎(𝜏)𝜕𝜏𝑋𝜇𝜕𝜏𝑋𝜇 + 2𝛾𝜏𝜎(𝜏, 𝜎)𝜕𝜏𝑋𝜇𝜕𝜎𝑋𝜇

+ 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝜇𝜕𝜎𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)(2𝑋̇− − 𝑋̇𝑖𝑋̇𝑖) − 2𝛾𝜏𝜎(𝜏, 𝜎)(𝑋′ − 𝑋̇𝑖𝑋′𝑖)

+ 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖]

= − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)(2𝜕𝜏𝑋− − 𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖)

− 2𝛾𝜏𝜎(𝜏, 𝜎)(𝜕𝜎𝑋− − 𝜕𝜏𝑋𝑖𝜕𝜎𝑋𝑖) + 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]
(67)
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Where in the 4th line the identity 𝜕𝑋+

𝜕𝜎 = 0 along with 𝜕𝑋+

𝜕𝜏 = 1. Now by convention we
typically split the 𝜕𝜎𝑋− term as

𝑥− = 1
𝓁

∫
𝓁

0
𝑑𝜎𝑋−(𝜏, 𝜎) (68)

𝑌− = 𝑋−(𝜏, 𝜎) − 𝑥−(𝜏) (69)

Where it’s clear that 𝑥− is the mean value of 𝑋− and the second term has an average
value of zero for a fixed 𝜏 such that

∫
𝓁

0
𝑑𝜎𝑌−(𝜏, 𝜎) = 0 (70)

This results in the following Lagrangian

𝐿 = − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)(2𝜕𝜏𝑋− − 𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖)

− 2𝛾𝜏𝜎(𝜏, 𝜎)(𝜕𝜎𝑌− − 𝜕𝜏𝑋𝑖𝜕𝜎𝑋𝑖) + 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]
(71)

We also rewrite the 𝑋− term using the identity 𝑋− = 𝑌− + 𝑥−. Looking at the first term

∫
𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)2𝜕𝜏𝑋−]

= ∫
𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)2𝜕𝜏(𝑌− + 𝑥−)]

=[𝛾𝜎𝜎(𝜏)2𝜕𝜏(∫
𝓁

0
𝑑𝜎𝑌− + ∫

𝓁

0
𝑑𝜎𝑥−)]

(72)

But the first integral is zero since by (70) which implies that the lagrangian can be
written as follows.

𝐿 = − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)(2𝜕𝜏𝑥− − 𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖)

− 2𝛾𝜏𝜎(𝜏, 𝜎)(𝜕𝜎𝑌− − 𝜕𝜏𝑋𝑖𝜕𝜎𝑋𝑖) + 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎))𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]
(73)

This concludes the groundwork required to solve the theory in these new coordinates.
In the next sections we will apply boundary conditions and create a mode expansion
along with quantizing the theory.
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1.7 Open String in Lightcone gauge

We begin by applying the boundary conditions of an open string with the Neumann
boundary condition (38) with the boundary at 𝓁 instead of at 𝜋 just for convention.

𝜕𝜎𝑋𝜇 = 0 (At 𝜎 = 0, 𝓁)

= 𝛾𝜎𝑏𝜕𝑏𝑋𝜇 = 𝛾𝜎𝜎𝜕𝜎𝑋𝜇 + 𝛾𝜎𝜏𝜕𝜏𝑋𝜇

= 𝛾𝜏𝜎𝜕𝜏𝑋𝜇 − 𝛾𝜏𝜏𝜕𝜎𝑋𝜇 = 0

(74)

Now since we are on lightcone gauge, we can let 𝜇 = + which implies

𝛾𝜏𝜎𝜕𝜏𝑋+ − 𝛾𝜏𝜏𝜕𝜎𝑋+ = 0 (At 𝜎 = 0, 𝓁) (75)

But the second term is zero since taking the derivative 𝜏 wrt 𝜎 in this gauge choice. On
the other hand, the first term will evaluate to simply 𝛾𝜏𝜎 since the derivative will be 1.

𝛾𝜏𝜎 = 0 (At 𝜎 = 0, 𝓁) (76)

Now taking the variation of the actionwrt to the newfield 𝑌− yields (ignoring the other
terms which are trivially zero)

𝛿𝑆 = ∫ 𝑑𝜏𝑑𝜎𝛿(2𝛾𝜏𝜎(𝜏, 𝜎)𝜕𝜎𝑌−)

= 2 ∫ 𝑑𝜏𝑑𝜎(𝛿𝜕𝜎(𝛾𝜏𝜎𝑌−) − 𝛿𝜕𝜎𝛾𝜏𝜎𝑌−)

= 2 ∫ 𝑑𝜏𝑑𝜎(𝜕𝜎(𝛾𝜏𝜎𝛿𝑌−) − 𝜕𝜎𝛾𝜏𝜎𝛿𝑌−)

= 2 ∫ 𝑑𝜏𝑑𝜎(−𝜕𝜎𝛾𝜏𝜎𝛿𝑌−) = 0

(77)

In the last line, we used the fact that the left side is zero because it is evaluated at the
boundary which we just determined was zero. Now The most general solutions to the
last equations is that such that 𝜕𝜎𝛾𝜏𝜎 is just a function of 𝜏. This allows the integral wrt
𝜎 to act on the 𝛿𝑌− which zeros the whole thing.

𝜕𝜎𝛾𝜏𝜎 = 𝐹(𝜏) (78)
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so
𝜕2

𝜎𝛾𝜏𝜎 = 0 (79)

Now this tells us that the derivative of 𝛾𝜏𝜎 only has 𝜏 dependence and yet wemust also
meet the boundary conditions that 𝛾𝜏𝜎(𝜏, 0) = 𝛾𝜏𝜎(𝜏, 𝓁) = 0 This constraints 𝛾𝜏𝜎 = 0
everywhere, otherwise we have no way of meeting both boundary conditions for any
𝜏. Finally we can use the boundary condition again once again

𝛾𝜏𝜎𝜕𝜏𝑋𝑖 − 𝛾𝜏𝜏𝜕𝜎𝑋𝑖 = 0 (At 𝜎 = 0, 𝓁) (80)

Where the first term is clearly zero and that leaves

𝛾𝜏𝜏𝜕𝜎𝑋𝑖 = 0 (At 𝜎 = 0, 𝓁) (81)

Then the lagrangian reduces to

𝐿 = − 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[𝛾𝜎𝜎(𝜏)(2𝜕𝜏𝑥− − 𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖)

− 2𝛾𝜏𝜎(𝜏, 𝜎)(𝜕𝜎𝑌− − 𝜕𝜏𝑋𝑖𝜕𝜎𝑋𝑖) + 1
𝛾𝜎𝜎(𝜏)(1 − 𝛾2

𝜏𝜎(𝜏, 𝜎)𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

= 1
4𝜋𝛼′ ∫

𝓁

0
𝑑𝜎[−𝛾𝜎𝜎(𝜏)(2𝜕𝜏𝑥− + 𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖) − 1

𝛾𝜎𝜎(𝜏)(𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

= − 𝓁
2𝜋𝛼′ 𝛾𝜎𝜎𝜕𝜏𝑥− + 1

4𝜋𝛼′ ∫
𝓁

0
𝑑𝜎[𝛾𝜎𝜎𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖 − 1

𝛾𝜎𝜎(𝜏)(𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

(82)

Nowwewish to find the conjugatemomentumof this lagrangian alongwith theHamil-
tonian, just like we did with the point particle case, in order to quantize the theory. We
begin by finding the conjugate momentum of all the independent variables.

𝑝− = −𝑝+ = 𝜕𝐿
𝜕(𝜕𝜏𝑥−) = − 𝓁

2𝜋𝛼′ 𝛾𝜎𝜎 (83)

On the other hand, the other independent variable 𝑋𝑖 is also trivial to take.

𝛱 𝑖 = 𝛿ℒ
𝛿(𝜕𝜏𝑋𝑖)

= 1
2𝜋𝛼′ 𝛾𝜎𝜎𝜕𝜏𝑋𝑖 (84)
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Where 𝛱 the conjugate momentum density. The Hamiltonian is then

𝐻 = 𝑝−𝜕𝜏𝑥− − 𝐿 + ∫ 𝑑𝜎(𝛱 𝑖𝜕𝜏𝑋𝑖) (85)

= ∫ 𝑑𝜎[− 1
4𝜋𝛼′ 𝛾𝜎𝜎𝜕𝜏𝑋𝑖𝜕𝜏𝑋𝑖 + 1

4𝜋𝛼′𝛾𝜎 𝜎
(𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖) + 𝛱 𝑖𝜕𝜏𝑋𝑖]

= ∫ 𝑑𝜎[− (2𝜋𝛼′)2

4𝜋𝛼′𝛾𝜎𝜎
𝛱 𝑖𝛱 𝑖 + 1

4𝜋𝛼′𝛾𝜎 𝜎
(𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖) + 2𝜋𝛼′

𝛾𝜎𝜎
𝛱 𝑖𝛱 𝑖]

= ∫ 𝑑𝜎[ 𝜋𝛼′

𝛾𝜎𝜎
𝛱 𝑖𝛱 𝑖 + 1

4𝜋𝛼′𝛾𝜎 𝜎
(𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

= 1
2𝛾𝜎𝜎

∫ 𝑑𝜎[2𝜋𝛼′𝛱 𝑖𝛱 𝑖 + 1
2𝜋𝛼′ (𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

= 𝓁
4𝜋𝛼′𝑝+ ∫ 𝑑𝜎[2𝜋𝛼′𝛱 𝑖𝛱 𝑖 + 1

2𝜋𝛼′ (𝜕𝜎𝑋𝑖𝜕𝜎𝑋𝑖)]

(86)

At this point, we can use the Hamilton’s equations to find the EOM. The first three are
trivial. Let 𝑐 ≡ 𝓁

2𝜋𝛼′𝑝+

𝜕𝜏𝑥− = 𝜕𝐻
𝜕𝑝−

= 𝐻
𝑝+ (87)

𝜕𝜏𝑋− = 𝛿𝐻
𝛿𝛱 𝑖 = 2𝑐𝜋𝛼′𝛱 𝑖 (88)

𝜕𝜏𝑝+ = 𝜕𝐻
𝜕𝑝+ = 0 (89)

While the last one requries an integration by parts.

𝛿𝐻 = 𝑐
2( 1

2𝜋𝛼′ 𝜕𝜎𝛿𝑋𝑖𝜕𝜎𝑋𝑖 + 1
2𝜋𝛼′ 𝜕𝜎𝑋𝑖𝜕𝜎𝛿𝑋𝑖)

= 𝑐
2𝜋𝛼′ 𝜕𝜎𝛿𝑋𝑖𝜕𝜎𝑋𝑖

Using

𝜕𝜎𝛿𝑋𝑖𝜕𝜎𝑋𝑖 = 𝜕𝜎(𝛿𝑋𝑖𝜕𝜎𝑋𝑖) − 𝛿𝑋𝑖𝜕2
𝜎𝑋𝑖

Then

𝛿𝐻 = 𝑐
2𝜋𝛼′ ∫ 𝑑𝜎[𝜕𝜎(𝛿𝑋𝑖𝜕𝜎𝑋𝑖) − 𝛿𝑋𝑖𝜕2

𝜎𝑋𝑖]

− 𝛿𝐻
𝛿𝑋𝑖 = 𝑐

2𝜋𝛼′ 𝜕2
𝜎𝑋𝑖

(90)

Where in the last line we used the boundary condition to zero the first term.
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Then the equation of motion is

𝜕𝜏𝛱 𝑖 = − 𝛿ℋ
𝛿𝑋𝑖 = 𝑐

2𝜋𝛼′ 𝜕2
𝜎𝑋𝑖 (91)

If we combine the second and last equation we get the (simple) wave equation!

𝜕2
𝜏𝑋𝑖 = 𝑐2𝜕2

𝜎𝑋𝑖 (92)

Since we will rework all this in the path integral formalism later. Lets finish this section
quickly by writing the mode expansion and quantizing the theory.

𝑋𝑖 = 𝑥𝑖 + 𝑝𝑖

𝑝+ 𝜏 + 𝑖(2𝛼′)
1
2

∞
∑

𝑛=−∞
𝑛≠0

1
𝑛𝛼𝑖

𝑛𝑒− 𝜋𝑖𝑛𝑐𝜏
𝓁 cos(𝜋𝑛𝜎

𝓁
) (93)

Where, classically, 𝛼𝑛 are the fourier coefficients. Now the goal is to quantize the theory.
This is completed with the two commutators at a fixed time.

[𝑥−, 𝑝+] = −𝑖

[𝑋𝑖(𝜎), 𝛱 𝑗(𝜎 ′)] = 𝑖𝛿𝑖𝑗𝛿(𝜎 − 𝜎 ′)
(94)

Now using the definitions
𝑥𝑖 = 1

𝓁
∫

𝓁

0
𝑑𝜎𝑋𝑖(𝜏, 𝜎) (95)

𝑝𝑖 = ∫
𝓁

0
𝑑𝜎𝛱 𝑖(𝜏, 𝜎) (96)

In other words the center of mass position and the average momentum

[𝑥𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗 (97)

[𝛼𝑖
𝑚, 𝛼𝑗

𝑛] = 𝑚𝛿𝑖𝑗𝛿𝑚−𝑛 (98)
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These relationships essentially promote the variables 𝛼, 𝛱, 𝑥𝑖, 𝑝+, 𝑥− into operatorswhich
obey a similiar algebra to the creation and annihilation operators. To be clear, the 𝛼 op-
erators satisfy a similiar algebra

𝑎𝑖
𝑚 ∼ 𝑚

1
2 𝑎 𝑎𝑖

−𝑚 ∼ 𝑚
1
2 𝑎†

For 𝑚 > 0
(99)

Where a and 𝑎† obey the harmonic osscilator creation and annhilation algebra. We then
define a k to be the center of mass momentum and are eigenstates of p

𝑝+ |0; 𝑘⟩ = 𝑘+ |0; 𝑘⟩

𝑝𝑖 |0; 𝑘⟩ = 𝑘𝑖 |0; 𝑘⟩
(100)

Where it’s clear the 0 represents the state of the oscillator and k is themomentum eigen-
value. Now just like any raising and lowering operator algebra we also impose that
lowering the 0th state will result in zero.

𝛼𝑖
𝑚 |0; 𝑘⟩ = 0 (101)

Finally we can write a general state

|𝑁; 𝑘⟩ =
𝐷−1
∏
𝑖=2

∞
∏
𝑛=1

(𝛼𝑖
−𝑛)𝑁𝑖𝑛

√(𝑛𝑁𝑖𝑛𝑁𝑖𝑛!)
|0; 𝑘⟩ (102)

Alright so don’t let this scare you. The top part is just the creation operator and the
bottom is just a normalization constant. The (i, n) subscript is just a tuple to index a
specific direction and oscillatormode. This completes our discussion for the open string
lightcone gauge (subject to change). Also (unlike QFT) we’re not creating multiple
strings using this. Rather we are changing the momentum of one string.
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1.8 Closed String in Lightcone gauge

Lets quickly repeat the process for a closed string in the lightcone gauge. This section
is still subject to modifications and rewrites in the future. Nevertheless, the analysis is
largely a parallel except we add one more condition to the gauge fix.

𝑋+ = 𝜏

𝜕𝜎𝛾𝜎𝜎 = 0

det(𝛾𝑎𝑏) = −1

𝛾𝜏𝜎(𝜏, 0) = 0

(103)

Now it turns out 𝜎 has symmetry under the following translations

𝜎 ′ = 𝜎 + s modulus 𝓁 (104)

Where ’S’ is a real scaler. This ’new freedom’ comes from the periodic condition. We
will ignore it for now. The mode expansion is then...

𝑋𝑖 = 𝑥𝑖 + 𝑝𝑖

𝑝+ 𝜏 + 𝑖(𝛼′

2 )
1
2

∞
∑

𝑛=−∞
𝑛≠0

(𝛼𝑖
𝑛

𝑛 𝑒− 2𝜋𝑖𝑛(𝜎+𝑐𝜏)
𝓁 + ̃𝛼𝑖

𝑛
𝑛 𝑒

2𝜋𝑖𝑛(𝜎−𝑐𝜏)
𝓁 ) (105)

Now promote the following to operators that obey the following relationships.

[𝑥−, 𝑝+] = −𝑖 (106)

[𝑥𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗 (107)

[𝛼𝑖
𝑚, 𝛼𝑗

𝑛] = 𝑚𝛿𝑖𝑗𝛿𝑚,−𝑛 (108)

[ ̃𝛼𝑖
𝑚, ̃𝛼𝑗

𝑛] = 𝑚𝛿𝑖𝑗𝛿𝑚,−𝑛 (109)

Finally a general state takes the following form

|𝑁, 𝑁̃; 𝑘⟩ =
𝐷−1
∏
𝑖=2

∞
∏
𝑛=1

(𝛼𝑖
−𝑛)𝑁𝑖𝑛( ̃𝛼𝑖

−𝑛)𝑁̃𝑖𝑛

√(𝑛𝑁𝑖𝑛𝑁𝑖𝑛!)(𝑛𝑁̃𝑖𝑛𝑁̃𝑖𝑛!)
|0, 0; 𝑘⟩ (110)
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This completes(subject to change) the discussion on the light cone gauge. We have built
up a basic quantized Strint Theory via canonical quantization. However, this approch
is more for intuition since we will focus the next sections on building up the Polyakov
path integral.

2 The Feynman Path Integral

2.1 The Path Integral formalism of QuantumMechanics

We begin this next section by building the mathematical foundation needed to actu-
ally solve (compute) string theory using modern methods. Indeed the ultimate goal of
these lecture notes is to write down the Polyakov path integral and compute scattering
amplitudes with it. To understand this, we must first understand the Feynman Path in-
tegral. Wewill begin by considering non relativistic QuantumMechanics. Lets attempt
to motivate and build the path integral formalism.

The one dimensional Hamiltonian of a simple system is given by

𝐻 = 𝑃2

2𝑚 + 𝑉(𝑄) (111)

Which satisfy the cannonical commuator relationship

[𝑄, 𝑃] = 𝑖ℏ (112)

Lets set ℏ = 1 likewe do formost of time for convenience. Now consider theHeisenberg
picture where operators are defined to be time dependent. Specifically, we can consider
an instantaneous eigenstate. Lets first use the construction from theHeisenberg picture

|𝑞, 𝑡⟩ = 𝑒𝑖𝐻𝑡 |𝑞⟩ (113)

Now operators are defined as follows.

𝑄(𝑡) = 𝑒𝑖𝐻𝑡𝑄(0)𝑒−𝑖𝐻𝑡 (114)
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Which implies that instanous eigenstates are found like follows

𝑄(𝑡) |𝑞, 𝑡⟩ = 𝑞 |𝑞, 𝑡⟩ (115)

Where the intermediate exponential cancel out. Now, we can write the transition am-
plitude as follows.

⟨𝑞″, 𝑡″|𝑞′, 𝑡′⟩ = ⟨𝑞″| 𝑒−𝑖𝐻𝑡″𝑒𝑖𝐻𝑡′ |𝑞′⟩ (116)

Now, from the Campbell-baker-Hausdorf formula

𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵𝑒− 1
2 [𝐴,𝐵]+.. (117)

All the terms of the right most exponential will cancel out of (117) if we can just show
that

[𝐴, 𝐵] = 0 (118)

This turns out to be case for us

[−𝑖𝐻𝑡″, 𝑖𝐻𝑡′] = 0 (119)

The global time parameter and constants don’t matter. The Hamiltonian will naturally
commute with itself which implies that we can treat this like follows

𝑒−𝑖𝐻(𝑡″−𝑡′) = 𝑒−𝑖𝐻𝑡″𝑒𝑖𝐻𝑡′ (120)

Cool, so we can break up the exponential without worrying about the fact that they are
operators instead of scalers. Now, we will split this up into discrete time intervals. Let
𝛿𝑡 = 𝑡″−𝑡′

𝑁+1 where N+1 is the total time intervals.

𝑒−𝑖𝐻(𝛿𝑡+𝛿𝑡+𝛿𝑡+𝛿𝑡+..) = 𝑒−𝑖𝐻𝛿𝑡𝑒−𝑖𝐻𝑡𝛿𝑒−𝑖𝐻𝛿𝑡𝑒−𝑖𝐻𝛿𝑡𝑒−𝑖𝐻𝛿𝑡 ⋅ ⋅ (121)

Nowat this point, we can intesert a complete set of states between every operator. Recall
the identity from Quantum Mechanics

∫
∞

−∞
|𝑞⟩ ⟨𝑞| 𝑑𝑞 = 1 (122)
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Wherewe can think of this as a sumof all projection operators |𝑞1⟩ ⟨𝑞1|which just returns
the original quantity. Let us apply this to every operator.

⟨𝑞″, 𝑡″|𝑞′, 𝑡′⟩ = ∫ 𝑑𝑞1𝑑𝑞2𝑑𝑞3𝑑𝑞4 ⋅ ⋅𝑑𝑞𝑁−1𝑑𝑞𝑁

⟨𝑞″|𝑒−𝑖𝐻𝛿𝑡|𝑞𝑁⟩ ⟨𝑞𝑁 |𝑒−𝑖𝐻𝛿𝑡|𝑞𝑁−1⟩ ⋅ ⋅ ⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ ⟨𝑞1|𝑒−𝑖𝐻𝛿𝑡|𝑞′⟩

= ∫
𝑁

∏
𝑗=1

𝑑𝑞𝑗 ⟨𝑞″|𝑒−𝑖𝐻𝛿𝑡|𝑞𝑁⟩ ⟨𝑞𝑁 |𝑒−𝑖𝐻𝛿𝑡|𝑞𝑁−1⟩ ⋅ ⋅ ⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ ⟨𝑞1|𝑒−𝑖𝐻𝛿𝑡|𝑞′⟩

(123)
Lets look at an individual inner product

⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ = ⟨𝑞2|𝑒−𝑖𝛿𝑡( 𝑃2
2𝑚 +𝑉(𝑄)|𝑞1⟩ (124)

Unfortunately 𝑃2 does not commute with 𝑉(𝑄) but we can instead use an approxi-
mation. Since the goal is to eventually take the limit as 𝛿𝑡 → 0 then this should be
acceptable.

𝑒−𝑖𝛿𝑡( 𝑃2
2𝑚 +𝑉(𝑄)) = 𝑒−𝑖𝛿𝑡 𝑃2

2𝑚 𝑒−𝑖𝛿𝑡𝑉(𝑄)𝑒𝑂(𝛿𝑡2) (125)

Where we usually neglect the last term because 𝛿𝑡 will approach zero. Now, insert the
identity

⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ = ∫ 𝑑𝑝1 ⟨𝑞2|𝑒−𝑖𝛿𝑡 𝑃2
2𝑚 |𝑝1⟩ ⟨𝑝1|𝑒−𝑖𝛿𝑡𝑉(𝑄)|𝑞1⟩ (126)

Using lowercase p and q now... (The eigenvalue equation is used)

⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ = ∫ 𝑑𝑝1𝑒−𝑖𝛿𝑡
𝑝2

1
2𝑚 𝑒−𝑖𝛿𝑡𝑉(𝑞1) ⟨𝑞2|𝑝1⟩ ⟨𝑝1|𝑞1⟩ (127)

But we know what the value of of ⟨𝑞2|𝑝1⟩ ⟨𝑝1|𝑞1⟩ which is just the eigenstates of p pro-
jected into position space and its complex conjugate. Specifically

⟨𝑝1|𝑞1⟩ = 1
√2𝜋

𝑒𝑖𝑝1𝑞1 (128)
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So we write (127) as the following.

⟨𝑞2|𝑒−𝑖𝐻𝛿𝑡|𝑞1⟩ = ∫ 𝑑𝑝1
2𝜋 𝑒−𝑖𝛿𝑡

𝑝2
1

2𝑚 𝑒−𝑖𝛿𝑡𝑉(𝑞1)𝑒𝑖𝑝1(𝑞2−𝑞1)

= ∫ 𝑑𝑝1
2𝜋 𝑒−𝑖𝛿𝑡𝐻(𝑞1,𝑝1)𝑒𝑖𝑝1(𝑞2−𝑞1)

(129)

Where we now have the semi classical Hamiltonian (well classical in the classical limit.
In otherwords theHamiltonian is a function of scalers) instead. Nowhere is something
that is usually brushed under the rug, it actually turns out that we’ve been a little messy
with the derivation. If wewant to consider a theory that is weyl ordered (which we do)
using a more general hamiltonian, we need to make a small replacement. It turns out,
the Hamiltonian in (129) should be really be a function of ( ̄𝑞, 𝑝) instead of (𝑞, 𝑝). So we
need to make the replacement 𝐻(𝑞, 𝑝) → 𝐻( ̄𝑞, 𝑝) where ̄𝑞 = 𝑞1+𝑞2

2 . Now repeating this
process with all of the inner products, we end up with

⟨𝑞″, 𝑡″|𝑞′, 𝑡′⟩ = ∫
𝑁

∏
𝑘=1

𝑑𝑞𝑘
𝑁

∏
𝑗=0

𝑑𝑝𝑗
2𝜋 𝑒𝑖𝑝𝑗(𝑞𝑗+1−𝑞𝑗)𝑒−𝑖𝛿𝑡𝐻( ̄𝑞𝑗,𝑝𝑗) (130)

Where ̄𝑞0 = 1
2(𝑞′ + 𝑞1) and ̄𝑞𝑁 = 1

2(𝑞𝑁 + 𝑞″). At this point, we can define the functional
differential as the follwing

𝒟𝑥 = 𝐶
𝑁

∏
𝑗

𝑑𝑥𝑗 (131)

Where C is an arbitrary constant. Now going back to the transition amplitude we can
turn the product of exponentials into a sum.

⟨𝑞″, 𝑡″|𝑞′, 𝑡′⟩ = ∫ 𝒟𝑞𝒟𝑝 exp (𝑖
𝑁

∑
𝑗=0

[𝑝𝑗(𝑞𝑗+1 − 𝑞𝑗) − 𝛿𝑡𝐻( ̄𝑞𝑗, 𝑝𝑗)])

= ∫ 𝒟𝑞𝒟𝑝 exp (𝑖
𝑁

∑
𝑗=0

[𝑝𝑗(𝑞𝑗+1 − 𝑞𝑗)
𝛿𝑡
𝛿𝑡 − 𝛿𝑡𝐻( ̄𝑞𝑗, 𝑝𝑗)])

= ∫ 𝒟𝑞𝒟𝑝 exp (𝑖
𝑁

∑
𝑗=0

[𝑝𝑗
(𝑞𝑗+1 − 𝑞𝑗)

𝛿𝑡 − 𝐻( ̄𝑞𝑗, 𝑝𝑗)]𝛿𝑡)

(132)

At this point we can formally take the continuum limit letting 𝛿𝑡 → 0. This produces

= ∫ 𝒟𝑞𝒟𝑝 exp (𝑖 ∫
𝑡″

𝑡′
[𝑝(𝑡) ̇𝑞(𝑡) − 𝐻(𝑞, 𝑝)]𝑑𝑡) (133)
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Where in the continuum limit the small perturbation of 𝑞disappears, in otherwords ̄𝑞 →
𝑞(𝑡). Alright now we wish to simplfy this integral by evaluating one of then functional
integrals 𝒟𝑝. To do this, we wiill assume H only has 𝑃2 dependence and re-express the
function as a discrete product and replacing 𝐻 = 𝑝2

2𝑚 + 𝑣(𝑞)

= ∫ 𝒟𝑞
𝑁

∏
𝑗=0

𝑑𝑝𝑗
2𝜋 exp (𝑖[𝑝𝑗

(𝑞𝑗+1 − 𝑞𝑗)
𝛿𝑡 − 𝐻(𝑞𝑗, 𝑝𝑗)]𝛿𝑡)

= ∫ 𝒟𝑞
𝑁

∏
𝑗=0

𝑑𝑝𝑗
2𝜋 exp (𝑖[𝑝𝑗

(𝑞𝑗+1 − 𝑞𝑗)
𝛿𝑡 −

𝑝2
𝑗

2𝑚 − 𝑣(𝑞𝑗)]𝛿𝑡)
(134)

Lets examine the stuff inside the exponential of one individual integral( out of the in-
finite ones).

exp (𝑖[𝑝𝑗
(𝑞𝑗+1 − 𝑞𝑗)

𝛿𝑡 −
𝑝2

𝑗
2𝑚 − 𝑣(𝑞𝑗)]𝛿𝑡)

= exp(𝑖[𝑝𝑗𝛿𝑡
(𝑞𝑗+1 − 𝑞𝑗)

𝛿𝑡 −
𝑝2

𝑗
2𝑚𝛿𝑡]) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

(135)

We can factor the part ’p’ inside the exponential by using complete the square. Specif-
ically

𝑖[𝑝𝑗𝛿𝑡
(𝑞𝑗+1 − 𝑞𝑗)

𝛿𝑡 −
𝑝2

𝑗
2𝑚𝛿𝑡]

= − 𝑖𝛿𝑡
2𝑚(𝑝2

𝑗 −
𝑝𝑗(𝑞𝑗+1 − 𝑞𝑗)2𝑚

𝛿𝑡 )

= − 𝑖𝛿𝑡
2𝑚(𝑝𝑗 −

(𝑞𝑗+1 − 𝑞𝑗)𝑚
𝛿𝑡 )2 +

𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚
2𝛿𝑡

(136)

So we can split up the exponential into several factors and put it back into the path
integrar

= ∫ 𝒟𝑞
𝑁

∏
𝑗=0

𝑑𝑝𝑗
2𝜋 exp (− 𝑖𝛿𝑡

2𝑚(𝑝𝑗 −
(𝑞𝑗+1 − 𝑞𝑗)𝑚

𝛿𝑡 )2) exp(
𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚

2𝛿𝑡 ) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

(137)
We now have a gaussian integral that can be evaluated for each ’j’ step. Actually it is a
fresnel integral that follows the identity.

∫
∞

−∞
𝑒−𝑖𝑎𝑥2 = √𝜋

𝑎 𝑒−𝑖 𝜋
4 (138)
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We can use this identity to evaluate the path integral exactly. Specifically 𝑎 = 𝛿𝑡
2𝑚 , After

the substitution we have...

= ∫ 𝒟𝑞
𝑁

∏
𝑗=0

√ 𝑚
2𝜋𝛿𝑡𝑒−𝑖 𝜋

4 exp(
𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚

2𝛿𝑡 ) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

= ∫ 𝒟𝑞 (√ 𝑚
2𝜋𝛿𝑡𝑒−𝑖 𝜋

4 )
𝑁+1 𝑁

∏
𝑗=0

exp(
𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚

2𝛿𝑡 ) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

= ∫ 𝒟𝑞
𝑁

∏
𝑗=0

exp(
𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚

2𝛿𝑡 ) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

Now, lets focus on just the product for now

→
𝑁

∏
𝑗=0

exp(
𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚

2𝛿𝑡 ) exp(−𝑖𝛿𝑡𝑣(𝑞𝑗))

= exp⎛⎜⎜
⎝

𝑁
∑
𝑗=0

𝑖(𝑞𝑗+1 − 𝑞𝑗)2𝑚
2𝛿𝑡 − 𝑖𝛿𝑡𝑣(𝑞𝑗)

⎞⎟⎟
⎠

= exp⎛⎜⎜
⎝

𝑖
𝑁

∑
𝑗=0

⎛⎜
⎝

(𝑞𝑗+1 − 𝑞𝑗)2𝑚
2𝛿𝑡2 − 𝑣(𝑞𝑗)⎞⎟

⎠
𝛿𝑡⎞⎟⎟

⎠

(139)

Where in the 3rd line, by by the definition of 𝒟𝓆 , we can absorb any constant into it. In
the 5th line we turned the product into a sum which we can do for exponentials.

Now taking the continuum limit, in other words letting 𝛿𝑡 → 0

= lim
𝛿𝑡→0

exp⎛⎜⎜
⎝

𝑖
𝑁

∑
𝑗=0

⎛⎜
⎝

(𝑞𝑗+1 − 𝑞𝑗)2𝑚
2𝛿𝑡2 − 𝑣(𝑞𝑗)⎞⎟

⎠
𝛿𝑡⎞⎟⎟

⎠

= exp(𝑖 ∫
𝑡″

𝑡′
(1

2𝑚 ̇𝑞2 − 𝑣(𝑞)) 𝑑𝑡)

= exp(𝑖 ∫
𝑡″

𝑡′
𝐿(𝑞, ̇𝑞)𝑑𝑡)

(140)

Now putting it all together we arrive at the final result.

∫
∞

−∞
𝒟𝑞 exp(𝑖 ∫

𝑡″

𝑡′
𝐿(𝑞, ̇𝑞)𝑑𝑡) (141)

This is the Feynman path integral. It is a functional integral, where we can think of 𝒟𝑞
as integrating over all possible positions 𝑑𝑞1𝑑𝑞2....
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Now in standard units this is given by

∫
∞

−∞
𝒟𝑞 exp( 𝑖

ℏ ∫
𝑡″

𝑡′
𝐿(𝑞, ̇𝑞)𝑑𝑡) (142)

There is anotherway to justify the final derivationwe did to absorb the two functional
integrals into one. BecausemostQFTbooks take this approach Iwill also include it here.
Going back that specific step

= ∫ 𝒟𝑞𝒟𝑝 exp (𝑖 ∫
𝑡″

𝑡′
[𝑝(𝑡) ̇𝑞(𝑡) − 𝐻(𝑞, 𝑝)]𝑑𝑡) (143)

We can instead consider an approximation where the [𝑝] functional integral is domi-
nated by the stationary phase. We achieve this by demanding that

𝜕
𝜕𝑝(𝑝(𝑡) ̇𝑞(𝑡) − 𝐻(𝑞, 𝑝)) = 0

̇𝑞 = 𝜕𝐻
𝜕𝑝

(144)

This is called the stationary phase approximation in mathematics. Intuitively we can
think of it assuming that the path integral will be dominated by paths with stationary
phases. Now we regonize the second part of equation (144) to be the Legendre trans-
formation for switching into the lagrangian formalism. Therefore,

∫
∞

−∞
𝒟𝑞 exp(𝑖 ∫

𝑡″

𝑡′
𝐿(𝑞, ̇𝑞)𝑑𝑡) (145)

We arrive at the same result now obtained by the stationary phase approximation. This
result is exact if momentum is of square (𝑝2) power.

Free Particle Examle

We shall now solve our first system in this new formalism. It is the simpliest system
we can conceive here. Namely we will consider the case of a free particle such that

𝐿 = 𝑚 ̇𝑞2

2 (146)

29



Now the feynman path integral becomes.

∫
∞

−∞
𝒟𝑞 exp(∫ 𝑚 ̇𝑞2

2 𝑑𝑡) (147)

Converting this to a discrete sum we get

∫
∞

−∞
𝒟𝑞 ∏ exp⎛⎜

⎝
𝑖𝑚(𝑞𝑛+1 − 𝑞𝑛)2

2𝛿𝑡2 𝛿𝑡⎞⎟
⎠

= ∫
∞

−∞
𝒟𝑞 exp⎛⎜⎜

⎝
𝑖

𝑁
∑
𝑗=0

⎛⎜⎜
⎝

𝑚(𝑞𝑗+1 − 𝑞𝑗)2

2𝛿𝑡2
⎞⎟⎟
⎠

𝛿𝑡⎞⎟⎟
⎠

= ∫
∞

−∞

𝑁
∏
𝑛=1

(𝑞𝑛) exp⎛⎜⎜
⎝

𝑖
𝑁

∑
𝑗=0

⎛⎜⎜
⎝

𝑚(𝑞𝑗+1 − 𝑞𝑗)2

2𝛿𝑡2
⎞⎟⎟
⎠

𝛿𝑡⎞⎟⎟
⎠

(148)

Nowwe get an infinite number of integrals. We wish to look at these individually. Lets
start with the 𝑑𝑞1 ignoring all the terms that would be held constant in the integration
process. We then wish to compute...

∫
∞

−∞
𝑑𝑞1 exp( 𝑖𝑚

2𝛿𝑡 ((𝑞1 − 𝑞′)2 + (𝑞2 − 𝑞1)2)) (149)

Now using expanding out the terms inside...

( 𝑖𝑚
2𝛿𝑡 ((𝑞1 − 𝑞′)2 + (𝑞2 − 𝑞1)2))

( 𝑖𝑚
2𝛿𝑡 (𝑞′2 + 𝑞2

2 + 2𝑞2
1 − 2𝑞1(𝑞2 + 𝑞′))

(150)

Now putting this back into (149) we get

exp( 𝑖𝑚
2𝛿𝑡 (𝑞′2 + 𝑞2

2)) ∫
∞

−∞
𝑑𝑞1 exp(𝑖𝑚

𝛿𝑡 (𝑞2
1 − 𝑞1(𝑞2 + 𝑞′)) (151)

Now using the identity

∫
∞

−∞
𝑑𝑥𝑒𝑖𝑎(𝑥2+𝑏𝑥) = √𝜋𝑖

𝑎 𝑒−𝑖𝑎 𝑏2
4 (152)
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We end up with the following expression if we replace 𝑎 = 𝑚/𝛿𝑡 and 𝑏 = −(𝑞2 + 𝑞′).
This results in (151) becoming..

exp( 𝑖𝑚
2𝛿𝑡 (𝑞′2 + 𝑞2

2)) √𝑖𝜋𝛿𝑡
𝑚 exp(−𝑖𝑚𝛿𝑡

(𝑞2 + 𝑞′)2

4 )

= √𝑖𝜋𝛿𝑡
𝑚 exp( 𝑖𝑚

4𝛿𝑡 (𝑞2 − 𝑞′)2)
(153)

we can then plug this result back into (148) and calculate the 𝑑𝑞2 integral

√𝑖𝜋𝛿𝑡
𝑚 ∫

∞

−∞

𝑁
∏
𝑛=2

(𝑞𝑛) exp( 𝑖𝑚
4𝛿𝑡 (𝑞2 − 𝑞′)2) exp⎛⎜⎜

⎝
𝑖

𝑁
∑
𝑗=2

⎛⎜⎜
⎝

𝑚(𝑞𝑗+1 − 𝑞𝑗)2

2𝛿𝑡2
⎞⎟⎟
⎠

𝛿𝑡⎞⎟⎟
⎠

= √𝑖𝜋𝛿𝑡
𝑚 ∫

∞

−∞

𝑁
∏
𝑛=2

(𝑞𝑛) exp( 𝑖𝑚
4𝛿𝑡 (𝑞2 − 𝑞′)2) exp( 𝑖𝑚

2𝛿𝑡 (𝑞3 − 𝑞2)2) exp⎛⎜⎜
⎝

𝑖
𝑁

∑
𝑗=2

⎛⎜⎜
⎝

𝑚(𝑞𝑗+1 − 𝑞𝑗)2

2𝛿𝑡2
⎞⎟⎟
⎠

𝛿𝑡⎞⎟⎟
⎠

(154)

2.2 Harmonic oscillator example and insertions

2.3 Fermionic Fields

2.4 Interacting theory

3 Conformal Field Theory

3.1 Complex Analysis

We begin with a short overview of complex analysis. Indeed several machinary is
needed from here to understand conformal field theory. This section is meant to pro-
vide a brief overview with an emphasis on computation instead of justifications. The
defining property of complex numbers is a number that satisfies the expression

𝑖2 = −1 (155)
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where this is defined in this matter to prevent the ambiguous definition of √−1 = 𝑖.
Now there are several ways to represent complex numbers but the most useful are the
cartesian and exponential form

𝑧 = 𝑎 + 𝑏𝑖

𝑧 = 𝑟𝑒𝑖𝜃
(156)

Where a, b, r and 𝜃 are real numbers. Every single complex number can be represented
in either of these forms. Nowmost stuff from standard analysis carries over to complex
analysis but there are a few thingswe can define specific to the complex plane. Consider
a point at 𝑧 = 3+6𝑖. What ifwewanted to define an operation that gives us the euclidean
distance from the origin (treating the complex plane as a pseudo 2D space). This is
accomplished by

|𝑧| = √𝑧 ̄𝑧 = √(3 + 6𝑖)(3 − 6𝑖) = √45 (157)

This is often called the modulus of z and, intuitively, we can think of it as giving us the
distance from the origin to a specific point on the complex plane.

We now move onto discussion of analytic functions. In a sense, a function is said to
be analytic if it is equal to its own Taylor series. That is,

𝑓 (𝑧) =
∞
∑
𝑘=0

𝑎𝑘(𝑧 − 𝑧0)𝑘

𝑎𝑘 = 𝑓 (𝑘)(𝑧0)
𝑘!

(158)

Where 𝑧0 is the center of the power series and a The implications of this is that the
function is infinitely differentiable. This is also known as 𝑐∞ in terms of smoothness.

Fundamental Theorem of Algebra

Now it turns out that the inclusion of complex numbers into our set allows us to
factor out every polynomial. That is, a polynomial of order m will have m complex
factors with multiplicies included. In practice this means that given a polynomial such
as 𝑥2 + 1. We can find two roots

(𝑥 − 𝑖)(𝑥 + 𝑖) = 𝑥2 + 1 (159)
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namely ±𝑖 for this case. If we have a polynomial of order m, we can instead find m
roots. Another example is 𝑥4 − 4𝑥3 + 13𝑥2 − 36𝑥 + 36. In this case, m = 4 we can factor
out like following

= 𝑥4 − 4𝑥3 + 13𝑥2 − 36𝑥 + 36

= (𝑥 − 2)2(𝑥2 + 9)

= (𝑥 − 2)2(𝑥 + 3𝑖)(𝑥 − 3𝑖)

(160)

So we end up with a repeated root of 2 along with ±3𝑖 for a total of 4 roots.

Cauchy-Riemann equations

One of the most useful theorems in complex analysis is the Cauchy-Riemann the-
orem. Indeed, it allows check if a function is analytic. The theorem goes as follows.
Consider a general complex function

𝑧 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (161)

Where ’u’ and ’v’ are real functions and we have assumed the cartesian basis. Now
it turns out that if Z is continuously differentiable then z is analytic if it satsifes the
following PDEs

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 and

𝜕𝑢
𝜕𝑦 = −𝜕𝑣

𝜕𝑥

(162)

And that’s it. Those two PDE’s essentially describe every single analytic function pro-
vided it is continuous and differentiable. Lets do an example. Consider the complex
function

𝑧 = 𝑟𝑒𝑖𝜃

𝑧 = 𝑟 sin(𝜃) + 𝑖𝑟 cos(𝜃)
(163)

Where it’s clear that in polar form u(𝑟, 𝜃) v(𝑟, 𝜃). Now in order to check the cauchy
rieman equationwemust switch our basis. Wedo this by expanding into the differential
form

𝑑𝑢 = 𝜕𝑢
𝜕𝑟 𝑑𝑟 + 𝜕𝑢

𝜕𝜃 𝑑𝜃

𝑑𝑣 = 𝜕𝑣
𝜕𝑟 𝑑𝑟 + 𝜕𝑣

𝜕𝜃𝑑𝜃
(164)
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Now using the polar coordinates transformation

𝑟 = √𝑥2 + 𝑦2

𝜃 = tan−1(𝑦
𝑥)

(165)

we can compute all the derivatives

𝜕𝑢
𝜕𝑥 = 𝜕𝑢

𝜕𝑟
𝜕𝑟
𝜕𝑥 + 𝜕𝑢

𝜕𝜃
𝜕𝜃
𝜕𝑥 = cos2(𝜃) + sin2(𝜃) = 1

𝜕𝑣
𝜕𝑦 = 𝜕𝑣

𝜕𝑟
𝜕𝑟
𝜕𝑦 + 𝜕𝑣

𝜕𝜃
𝜕𝜃
𝜕𝑦 = cos2(𝜃) + sin2(𝜃) = 1

and
𝜕𝑢
𝜕𝑦 = 𝜕𝑢

𝜕𝑟
𝜕𝑟
𝜕𝑦 + 𝜕𝑢

𝜕𝜃
𝜕𝜃
𝜕𝑦 = cos(𝜃) sin(𝜃) − cos(𝜃) sin(𝜃) = 0

𝜕𝑣
𝜕𝑥 = 𝜕𝑣

𝜕𝑟
𝜕𝑟
𝜕𝑥 + 𝜕𝑣

𝜕𝜃
𝜕𝜃
𝜕𝑥 = cos(𝜃) sin(𝜃) − cos(𝜃) sin(𝜃) = 0

(166)

Where it’s clear the theorem is satisfied since 𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 and 𝜕𝑢
𝜕𝑦 = −𝜕𝑣

𝜕𝑥 which implies that
the function 𝑧 = 𝑟𝑒𝑖𝜃 is analytic.

Contour integration

We want to define a way to integrate in the complex plane. Indeed we quickly run
into an issue when defining integration. In the real number line, the bounds are not
ambigious. Namely, if we integrate from say 0 to infinity, we don’t need to worry about
the particular path that we choose. Indeed, there is only one available path. However,
once we introduce the complex plane, we have an infinite amount of paths that can be
taken to reach the bounds.Therefore, instead of considering integration we contsruct
what is known as a contour integral. The idea is analogous to that of a line integral in
mulitvariable calculus. Namely, we define a parametrized path 𝛾(𝑡) that we choose in
order to specify a path.

∫
𝛾

𝑓 (𝑧)𝑑𝑧 (167)
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And that it! Thats how we define integration in the complex plane. Well when we
actually compute this, we typically express it in a parametrized form that makes it clear
that we are specifying a particular path. Using the definition of a differential

𝑧 = 𝛾(𝑡)

𝑑𝑧 = 𝑑𝛾
𝑑𝑡 𝑑𝑡

(168)

So..
∫

𝑡0

0
𝑓 (𝛾(𝑡))𝑑𝛾

𝑑𝑡 𝑑𝑡 (169)

Finally if we have a Contour integral that forms a simple closed loop then we call this a
closed contour integral and write it like follows. The contour is always implies to take
a counter clockwise path unless specified otherwise.

∮
𝛾

𝑓 (𝑧)𝑑𝑧 (170)

Now, there is a very important theorem when it comes to closed contour integrals that
roughly the next section will also cover. For now lets consider the following construc-
tion.

𝑧 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (171)

Now consider the cartesian vector

𝑤 = ⎛⎜⎜⎜
⎝

𝑢(𝑥, 𝑦)
−𝑣(𝑥, 𝑦)

⎞⎟⎟⎟
⎠

(172)

It turns out that
∇ ⋅ 𝑤 = 𝜕𝑢

𝜕𝑥 − 𝜕𝑣
𝜕𝑦

(∇ × 𝑤)𝑧 = −𝜕𝑢
𝜕𝑦 − 𝜕𝑣

𝜕𝑥

(173)

But these are just the Cauchy-Riemann equations. Which implies that this vector fields
will have zero divergence and zero curl as long as the function f is analytic. This result
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is extremely important because we can split up closed a contour integral into the two
components.

∮
𝛾

𝑓 (𝑧)𝑑𝑧 = 𝑓 Work + 𝑖𝑓 Flux (174)

Now the divergence theorem and Stokes’ theorem say

∮
𝛾

𝐹 ⋅ 𝑑𝓁 = ∬
𝑅

(∇ × 𝐹)𝑑𝐴

∮
𝛾

𝐹 ⋅ ̂𝑛𝑑𝑙 = ∬
𝑅

(∇ ⋅ 𝐹)𝑑𝐴
(175)

Where the first one is the 𝑓 𝑊𝑜𝑟𝑘 and the second integral is 𝑓 𝐹𝑙𝑢𝑥 however we just estab-
lished that these two quantities are zero if the function is analytic since the right hand
side is zero. Which implies that for any analytic function the closed contour integral
will be zero provided the right hand side of the expression remains zero everywhere.
In other words, provided the area enclosed by the contour is analytic, then

∮
𝛾

𝑓 (𝑧)𝑑𝑧 = 0 (176)

3.2 Residue Theorem

We now want to explore what happens when the function is mostly analytic but has
what is known as a pole. To understand, consider a function 𝑓 = 𝑐−1

𝑧 . Where 𝑐−1 is a
constant. We know that the function has a singularity at the point 𝑧 = 0 which implies
it isn’t analytic there, Lets try performing a contour integral around it. Choosing the
parametrization 𝑧(𝜃) = 𝑟𝑒𝑖𝜃 then we can write

∮ 𝑐−1
𝑧 𝑑𝑧 = ∮ 𝑐−1

𝑟𝑒𝑖𝜃 𝑑𝑧

𝑑𝑧 = 𝑖𝑟𝑒𝑖𝜃𝑑𝜃

∫
2𝜋

0

𝑐−1
𝑟𝑒𝑖𝜃 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 = 2𝜋𝑖𝑐−1

(177)

Interestingly, we end upwith a term that is proportional to ’i’. This implies that contour
integral has flux by nowork. Also, the result is independent of the radius of the contour.
It only depends on the constant coefficient 𝑐0. Indeed it turns out the singularity causes
there to be a positive flux. It turns out that whenever we have a ’pole’ which we can
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think of as a singularities that are analytic in the neighborhood around it except at the
location of the pole. This is known as the function being Meromorphic. Which again,
just means the function is analytic an infinitesimal distance around a point except at the
point

Now if you think the math here resembles that of gauss’s law then you would be
correct. Indeed we can think of the poles as charges with a charge of 𝑐−1 and naturally
the flux will give us the sum of the total amount of charge times some constant which
is 2𝜋𝑖 in this case.

It turns out that any closed contour integral of the form

∮
𝛾

1
(𝑧 − 𝑎)𝑛 𝑑𝑧 = 0

For n ≠ 1
(178)

Where n can be positive or negative. The implications of this result are massive but first
we need to understand one thing.

For any meromorphic function, a laruent series lets us expand any reasonable f(z)
function as the following.

𝑓 (𝑧) =
∞
∑

𝑛=−∞
𝑐𝑛(𝑧 − 𝑎)𝑛

Where ’a’ is the location of the pole. 𝑐𝑛 are coefficients Now...

∮ 𝑓 (𝑧)𝑑𝑧 = ∮
∞
∑

𝑛=∞
𝑐𝑛(𝑧 − 𝑎)𝑛𝑑𝑧

= ∮ 𝑑𝑧[... + 𝑐−2
(𝑧 − 𝑎)2 + 𝑐−1

(𝑧 − 𝑎)1 + 𝑐0
(𝑧 − 𝑎)0 + 𝑐1(𝑧 − 𝑎)1 + 𝑐2(𝑧 − 𝑎)2+...]

But we just established that only the 𝑐−1 will be non zero therefore

∮ 𝑓 (𝑧)𝑑𝑧 = 2𝜋𝑖𝑐−1

(179)

We typically call 𝑐−1 the residue of a specific pole. This is analogues to the charge is
gauss’s law. The coefficients in the Laurent series are defined to be

𝑐𝑛 = 1
2𝜋𝑖 ∮

𝛾

𝑓 (𝑧)
(𝑧 − 𝑎)𝑛+1 𝑑𝑧 (180)
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Where ’a’ is the location of a pole. Nowwe finally reach the residue the theorem. Which
states that any closed contour integral can be expressed as a sum of the residues times
2𝜋𝑖

∮
𝛾

𝑓 (𝑧)𝑑𝑧 = 2𝜋𝑖 ∑Res(𝑓 , 𝑎𝑘) (181)

In other words, the closed contour integral is proportional to the sum of all the residues
enclosed. This is by far the most important theorem in complex analysis. If this sounds
like Gauss’s law, it should. Now we won’t provide a formal proof for the purpose of
not derailing the subject.

The most straight forward way to compute the residues is by applying the formula

Res(f,a) = 1
𝑝 − 1 lim𝑧→𝑎

𝑑𝑝−1

𝑑𝑧𝑝−1 ((𝑧 − 𝑎)𝑝𝑓 (𝑧)) (182)

Where p is the order of the pole. This quantity is found by demanding that the quantity

(𝑧 − 𝑎)𝑛𝑓 (𝑧) (183)

is analytic instead of meromorphic for the smallest ’n’ possible. And that same value
of ’n’ turns out to be the order of the pole.

Other modes of finding the 𝑐−1 coefficient including doing a mode expansion. For
example consider 𝑒

1
𝑧 . We can find the residue by doing a taylor expansion of 𝑒𝑧. Con-

sider the taylor expansion centered at zero

𝑒𝑧 = 1 + 𝑧 + 𝑧2

2! + ... (184)

Now replace 𝑧 → 1
𝑧

𝑒
1
𝑧 = 1 + 1

𝑧 + 1
𝑧22!

+ ... (185)

Where now it’s clear the residue is encoded in the second term and is simply 1.

Wefinish this section by including another power theorem in complex analysis. Given
an analytic function we can get the value at a point ’a’ using the formula

𝑓 (𝑎) = 1
2𝜋𝑖 ∮

𝛾

𝑓 (𝑧)
𝑧 − 𝑎𝑑𝑧 (186)
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This shows us just how powerful analytic functions are. Indeed we can get the value
of any point inside a contour by just knowing the values around it. Differentiating the
above equation n times provides this convinent formula

𝑓 (𝑛)(𝑎) = 𝑛!
2𝜋𝑖 ∮

𝛾

𝑓 (𝑧)
(𝑧 − 𝑎)𝑛+1 𝑑𝑧 (187)

This completes our discussion of most of the machinery required from complex analy-
sis. There is just onemore thingwe need to take care of beforewe resume our discussion
on Conformal Field Theory.

3.3 Analytic Continuation

We now wish to explore our first conformal transformation. Indeed, an analytic func-
tion is said to be conformal in all places where the derivative doesn’t vanish. But what
exactly do we mean by a conformal transformation? The definition is quite simple ac-
tually.

A conformal transformation is a transformation that preservers angles after the trans-
formation. A few examples you may be familiar with are rotations and translations.
Naturally, angles are preserved under these transformations. Analytic functions are
similar but they persevere angles 𝓁ℴ𝒸𝒶𝓁𝓁𝓎 instead of globally at places where it’s first
derivative isn’t zero. Sowhenwe say conformal transformation, we usuallymean angle
preserving transformation.

The idea of analytic continuations stems from expending a function beyond it’s orig-
inal domain. The extension is chosen suchs that the transofrmation reamins locally
conformal including in regions that extend beyond the domain of the function. Well
the rigorous definition is that the functions is extended, such that, the resulting func-
tion is analytic but intuitively we can think of analytic continuation as an extensions
that preserves angles in regions where it’s first derivative isn’t zero.

The best way to understand is from an example. Consider the function

𝑓 (𝑧) =
∞
∑
𝑘=0

(−1)𝑘(𝑧 − 1)𝑘 (188)
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The series converges in the open set defined by 𝑈 = {|𝑧 − 1| < 1} which just means the
set of points around ’1’ with a modulus of less than one. In other words a circle in the
complex plane of radius one. Now lets try to create a power series in the complex plane
center somewhere close to the edge of the boundary at a point ’a’.

𝑓 (𝑧) =
∞
∑
𝑘=0

𝑎𝑘(𝑧 − 𝑎)𝑘

𝑎𝑘 = 𝑓 (𝑘)(𝑎)
𝑘!

𝑎𝑘 = 1
2𝜋𝑖 ∮

𝛾

𝑓 (𝑡)
(𝑡 − 𝑎)𝑛+1 𝑑𝑡

(189)

Expanding f(t) using the definition of f(z)

𝑎𝑘 = 1
2𝜋𝑖 ∮

𝛾

∑∞
𝑛=0(−1)𝑛(𝑡 − 1)𝑛

(𝑡 − 𝑎)𝑘+1 𝑑𝑡 (190)

Now we choose a parameterization such that the contour stays inside the analytic por-
tion of the function.

𝑎𝑘 = 1
2𝜋𝑖 ∫

2𝜋

0

∑∞
𝑛=0(−1)𝑛(𝑎 + 𝑟𝑒𝑖𝜃 − 1)𝑛

(𝑎 + 𝑟𝑒𝑖𝜃 − 𝑎)𝑘+1 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 (191)

Where we make sure to choose a parametrization 𝑎 + 𝑟𝑒𝑖𝜃 such that the contour stays
inside the analytically defined portion. Now using the binomial expansion

𝑎𝑘 = 1
2𝜋𝑖 ∫

2𝜋

0

∑∞
𝑛=0(−1)𝑛(𝑎 + 𝑟𝑒𝑖𝜃 − 1)𝑛

(𝑟𝑒𝑖𝜃)𝑘+1 𝑖𝑟𝑒𝑖𝜃𝑑𝜃

= 1
2𝜋

∞
∑
𝑛=0

(−1)𝑛 ∫
2𝜋

0

∑𝑛
𝑚=0

⎛⎜⎜⎜
⎝

𝑛
𝑚

⎞⎟⎟⎟
⎠

(𝑎 − 1)𝑛−𝑚(𝑟𝑒𝑖𝜃)𝑚

(𝑟𝑒𝑖𝜃)𝑘 𝑑𝜃

= 1
2𝜋

∞
∑
𝑛=0

(−1)𝑛 ∫
2𝜋

0

𝑛
∑
𝑚=0

⎛⎜⎜⎜
⎝

𝑛
𝑚

⎞⎟⎟⎟
⎠

(𝑎 − 1)𝑛−𝑚𝑟𝑚−𝑘𝑒𝑖(𝑚−𝑘)𝜃𝑑𝜃

(192)
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Now the integral is kronecker delta which implies its zero unless 𝑚 = 𝑘. We an contract
the second sum to force this.

𝑎𝑘 = 1
2𝜋 ∫

2𝜋

0

𝑛
∑
𝑚=𝑘

(−1)𝑛 ⎛⎜⎜⎜
⎝

𝑛
𝑘
⎞⎟⎟⎟
⎠

(𝑎 − 1)𝑛−𝑘𝑑𝜃

= (−1)𝑘𝑎−𝑘−1

(193)

If we use these coefficients to the original for the taylor expansion we can get.

1
𝑎

∞
∑
𝑘=0

(1 − 𝑧
𝑎)𝑘 (194)

Using the geomertric series identity we can see.

𝑓 (𝑧) → 1
(𝑧 − 𝑎) + 𝑎 (195)

Which has a radius of convergence of |a| which we can pick such that |a| > 1 but where
’a’ is still in 𝑈. This allows the series to converge for areas beyond it’s original domain
outside of 𝑈 which only had a radius of |1|. Indeed the analytic continuation of the
original function is 1/𝑧. This extends the domain of the original function in all except
the point at 𝑧 = 0 where the function has a pole. There are many functions that are
defined via analytic continuation. For instance the gamma function

𝛤(𝑧) (196)

is defined for complex values via analytic continuation.

Most useful for string theory, the infinite series

∞
∑
𝑛=1

1
𝑛𝑧 (197)

converges for values where Re(𝑧) > 1. We then define the analytically continued func-
tion 𝜁(𝑧) to be defined for all values except for a pole at z = 1.

Perhaps most useful to string theory, we can let z = -1 which allows us to formally
make the replacement
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∞
∑
𝑛=1

𝑛 = 1 + 2 + 3 + ... → 𝜁(−1) = − 1
12 (198)

This concludes the discussion on complex analysis. Wewill continue in the next section
exploring conformal field theory.

3.4 Euclidean CFT and Complex Coordinates

Now that we have the mathmatical prerequistes out of the way. It its time to start
builidng We will begin our analysis of CFT by considering a euclidean metric along
with a euclidean path integral. The idea is that we can solve things easier in euclidean
space an analytically continues using the minkowski continuation.

We will begin by defining a new set of ”Complex coordinates” to simply analysis of
conformal field theory. We begin by defining the following variables

𝑧 = 𝜎1 + 𝑖𝜎2

̄𝑧 = 𝜎1 − 𝑖𝜎2

𝜕𝑧 = 1
2(𝜕1 − 𝑖𝜕2)

𝜕 ̄𝑧 = 1
2(𝜕1 + 𝑖𝜕2)

(199)

Where by convention we abbreviate the partials to just 𝜕 and ̄𝜕 if the notation isn’t am-
biguous. These satisfy the following useful properties.

𝜕𝑧𝑧 = 1 𝜕𝑧 ̄𝑧 = 0 𝜕 ̄𝑧𝑧 = 0 𝜕 ̄𝑧 ̄𝑧 = 1 (200)

Okay so what does this mean? It means that we can intuitively think of ̄𝑧 and 𝑧 as being
independent variables. So for instance, taking the derivative of 𝑧 ̄𝑧 Wrt to 𝑧 allows us to
treat ̄𝑧 as a constant..

For a general vector 𝑣 we define the z component as follows

𝑣𝑧 = 𝑣1 + 𝑖𝑣2 𝑣 ̄𝑧 = 𝑣1 − 𝑖𝑣2 𝑣𝑧 = 1
2(𝑣1 − 𝑖𝑣2) 𝑣 ̄𝑧 = 1

2(𝑣1 + 𝑖𝑣2) (201)
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And the z component of the metric is given by

𝑔𝑧 ̄𝑧 = 𝑔 ̄𝑧𝑧 = 1
2 𝑔 ̄𝑧 ̄𝑧 = 𝑔𝑧𝑧 = 0 𝑔𝑧 ̄𝑧 = 𝑔 ̄𝑧𝑧 = 2 𝑔𝑧𝑧 = 𝑔𝑧𝑧 = 0 (202)

In other words its clear that in this new basis the metric tensor is given by

𝑔𝑎𝑏 → ⎛⎜⎜⎜
⎝

0 1
2

1
2 0

⎞⎟⎟⎟
⎠

(203)

Note that this is still euclidean space, we are interested in Minkowski space world-
sheets butwewill later figure out howwe canuse analytic continuation to getminkowskian
results from euclidean world-sheets.

The proper length is therefore given by

𝑑𝑠2 = 𝑑𝑋𝜇𝑔𝜇𝜈𝑑𝑋𝜈

𝑑𝑠2 = 𝑑𝑧𝑔𝑧 ̄𝑧𝑑 ̄𝑧 + 𝑑 ̄𝑧𝑔 ̄𝑧𝑧𝑑𝑧

𝑑𝑠2 = 𝑑𝑧𝑑 ̄𝑧

(204)

Where the last line is only true due to the symmetry of the situation.

Finally we define the differential area element as 𝑑2𝑧 is given by the usual equation

𝑑2𝑧|det(𝑔)|
1
2 = 𝑑𝜎1𝑑𝜎2

𝑑2𝑧 = 2𝑑𝜎1𝑑𝜎2
(205)

Finally we define the dirac delta function to carry a factor of 1/2

𝛿2(𝑧, ̄𝑧) = 1
2𝛿(𝑧)𝛿( ̄𝑧) (206)

In these new This concludes all the definition for the new set of coordinates. Let us now
look at a few equation that can be rewritten in these coordiantes. The first one is the
divergence theorem which is now given by

∫
𝑅

𝑑2𝑧(𝜕𝑧𝑣𝑧 + 𝜕 ̄𝑧𝑣 ̄𝑧) = 𝑖 ∮
𝜕𝑅

(𝑣𝑧𝑑 ̄𝑧 − 𝑣 ̄𝑧𝑑𝑧) (207)
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The action is now given by the following formula

𝑆 = 1
2𝜋𝛼′ ∫ 𝑑2𝑧𝜕𝑋𝜇 ̄𝜕𝑋𝜇 (208)

This can be shown to be equivalent to the Polyakov action by replacing the complex
coordinates with our definitions.

𝑆 = 1
2𝜋𝛼′ ∫ 𝑑2𝑧𝜕𝑋𝜇 ̄𝜕𝑋𝜇

= 1
2𝜋𝛼′ ∫ 𝑑2𝑧1

2(𝜕1 − 𝑖𝜕2)𝑋𝜇 1
2(𝜕1 + 𝑖𝜕2)𝑋𝜇

= 1
8𝜋𝛼′ ∫ 𝑑2𝑧(𝜕1𝑋𝜇𝜕1𝑋𝜇 + 𝜕2𝑋𝜇𝜕2𝑋𝜇)

= 1
4𝜋𝛼′ ∫ 𝑑𝜎1𝑑𝜎2(𝜕1𝑋𝜇𝜕1𝑋𝜇 + 𝜕2𝑋𝜇𝜕2𝑋𝜇)

(209)

But this is exactly just theworld sheetmetric (13) butwith𝛾 replacedwith the euclidean
metric 𝛿𝑎𝑏 which function identically regardless of if the indicies are raised or lowered.

Now the equation of motion is given by

𝜕 ̄𝜕𝑋𝜇(𝑧, ̄𝑧) = 0 (210)

We can easily show this reduces to the standard equation of motion.

= 𝜕 ̄𝜕𝑋𝜇(𝑧, ̄𝑧) = 0

= 1
2(𝜕1 − 𝑖𝜕2)1

2(𝜕1 + 𝑖𝜕2)𝑋𝜇

= 1
4(𝜕1𝜕1 + 𝜕2𝜕2)𝑋𝜇

= 𝜕𝑖𝜕𝑗𝛿𝑖𝑗𝑋𝜇 = 0

= ∇2𝑋𝜇 = 0

(211)
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Which is just the equation of motion in euclidean space. Now there is something im-
portant you may have already noticed. Lets try acting the ̄𝜕 into an arbitrary function.

1
2(𝜕1 + 𝑖𝜕2)𝑓 (𝑧)
1
2(𝜕1 + 𝑖𝜕2)(𝑢(𝑥) + 𝑖𝑣(𝑦))
1
2(𝜕1𝑢 + 𝑖𝜕2𝑢 + 𝑖𝜕1𝑣 + 𝑖𝜕2𝑢 − 𝜕2𝑣)

(212)

Now demanding that ̄𝜕𝑓 (𝑧) = 0 implies the following two equation

𝜕1𝑢 = 𝜕2𝑣

𝜕1𝑣 = −𝜕2𝑢
(213)

But these are just the Cauchy-Riemann equations. Which impllies that ̄𝜕𝑓 = 0 if the
function f is 𝒽ℴ𝓁ℴ𝓂ℴ𝓇𝓅𝒽𝒾𝒸 (analytic). The same is true for 𝜕𝑓 = 0 implies that f is
𝒶𝓃𝓉𝒾𝒽ℴ𝓁ℴ𝓂ℴ𝓇𝓅𝒽𝒾𝒸 . This motivates us to define some terminology We say that

𝜕𝑓 is the holomorphic derivative which annihilates anti-holomorphic parts

̄𝜕𝑓 is the anti-holomorphic derivative which annhillates the holomorphic parts
(214)

Note that we can interchange the partial derivatives in the equation of motion.

̄𝜕(𝜕𝑋𝜇) = 0 (215)

Which implies that 𝜕𝑋𝜇 is holomorphic by (213). And also

𝜕( ̄𝜕𝑋𝜇) = 0 (216)

Which implies that ̄𝜕𝑋𝜇 is anti-holomorphic.

Now this motivates us to define a few terminologies. We consider left moving to be
synoymous with holomorphic and right moving with anti-holomorphic.
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3.5 Euclidean Path integral and Normal ordering

We now wish to explore expectations values in the path integral formalism to derive
and enlighten with several properties. The general expectation value of a functional
ℱ[𝑋] is given by

⟨ℱ[𝑋]⟩ = ∫ 𝒟𝓍 exp(−𝑆𝐸)ℱ[𝑋] (217)

Where 𝑆𝐸 is the euclidean action and 𝐹[𝑋] is any functional of 𝑋. Now there are a
few properties that are worth mentioning. First one is that the path integral of a total
derivative is zero. This is analgous to the case for standard integrals. Specifically

∫
∞

−∞

𝑑𝑓
𝑑𝑥𝑑𝑥 = 0 (218)

Assuming that the function f converges. Now for path integrals. It makes sense to use
the functional derivative

𝛿
𝛿𝑋𝜇

∫ 𝒟𝓍 exp(−𝑆𝐸) = 0

= ∫ 𝒟𝓍 𝛿
𝛿𝑋𝜇

exp(−𝑆𝐸) = 0

= − ∫ 𝒟𝓍 exp(−𝑆𝐸) 𝛿𝑆𝐸
𝛿𝑋𝜇

= 0

= − ⟨ 𝛿𝑆𝐸
𝛿𝑋𝜇

⟩

= 1
𝜋𝛼′ ⟨𝜕 ̄𝜕𝑋𝜇(𝑧, ̄𝑧)⟩

(219)

The same argument holds for any amount of insertions to the path integral. So we can
write

⟨𝜕 ̄𝜕𝑋𝜇(𝑧, ̄𝑧)...⟩ = 0 (220)

Where the ... at the end represents insertions far away from z. Lets instead consider
the case where the insertion is coincident (short distance) to z. Lets say the insertion is
located at (𝑧′, ̄𝑧′)
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Consider the total functional derivative.

𝛿
𝛿𝑋𝜇(𝑧, ̄𝑧) ∫ 𝒟𝓍 exp(−𝑆𝐸)𝑋𝜈(𝑧′, ̄𝑧′) = 0

= ∫ 𝒟𝓍 𝛿
𝛿𝑋𝜇

(exp(−𝑆𝐸)𝑋𝜈) = 0

= ∫ 𝒟𝓍 exp(−𝑆𝐸) ⎛⎜
⎝

𝛿𝑋𝜈

𝛿𝑋𝜇
+ 𝛿𝑆

𝛿𝑋𝜇
𝑋𝜈⎞⎟

⎠
= 0

= ∫ 𝒟𝓍 exp(−𝑆𝐸) (𝜂𝜇𝜈𝛿2(𝑧 − 𝑧′, ̄𝑧 − ̄𝑧′) + 1
𝜋𝛼′ 𝜕𝑧𝜕 ̄𝑧𝑋𝜇𝑋𝜈) = 0

= (𝜂𝜇𝜈⟨𝛿2(𝑧 − 𝑧′, ̄𝑧 − ̄𝑧′)⟩ + 1
𝜋𝛼′ ⟨𝜕𝑧𝜕 ̄𝑧𝑋𝜇(𝑧, ̄𝑧)𝑋𝜈(𝑧′, ̄𝑧′)⟩) = 0

(221)

Where in the last line, we used the definition of expectation value in the path integral
formalism along with relacing the dirac delta which is the continuous delta function.
What does this tell us? It means that the equation of motion is the same except if the
points are right on top of each other. Now in the operator formalism we can write the
results of (221) as the following

1
𝜋𝛼′ 𝜕𝑧𝜕 ̄𝑧𝑋𝜇(𝑧, ̄𝑧)𝑋𝜈(𝑧′, ̄𝑧′) = −𝜂𝜇𝜈𝛿2(𝑧 − 𝑧′, ̄𝑧 − ̄𝑧′) (222)

Where we simply replaced the stuff inside expectation values with operators 𝑋̂.

Normal ordering

Now we may be familiar with normal ordering in QFT. That is, the annhilation op-
erators are to the left of the creation operators. However the normal ordering we will
define here is slightly differently. Specifically we use the following definitions

∶ 𝑋𝜇(𝑧, ̄𝑧) ∶≡ 𝑋𝜇(𝑧, ̄𝑧) (223)

∶ 𝑋𝜇(𝑧, ̄𝑧)𝑋𝜈(𝑧′, ̄𝑧′) ∶= 𝑋𝜇(𝑧, ̄𝑧)𝑋𝜈(𝑧′, ̄𝑧′) + 𝛼′

2 𝜂𝜇𝜈 ln |𝑧12|2 (224)

where we defined the tensor for convenience

𝑧𝑖𝑗 = 𝑧𝑖 − 𝑧𝑗 (225)
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We define the normal ordering this way because of the nice property

𝜕1 ̄𝜕1 ∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶= 0 (226)

Where this is clear based of the property that.

𝜕 ̄𝜕 ln |𝑧|2 = 2𝜋𝛿2(𝑧, ̄𝑧) (227)

We can check that
𝜕1 ̄𝜕1 ∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶= 0 (228)

By first expanding using (224) and then...

𝜕1 ̄𝜕1(𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) + 𝛼′

2 𝜂𝜇𝜈 ln |𝑧12|2) (229)

Now using the operator product identity (222)

−𝜋𝛼′𝜂𝜇𝜈𝛿2(𝑧1 − 𝑧2, ̄𝑧1 − ̄𝑧2) + 𝛼′

2 𝜂𝜇𝜈𝜕1 ̄𝜕2 ln |𝑧12|2 (230)

using
𝜕𝑧12
𝜕𝑧1

= 𝜕 ̄𝑧12
𝜕 ̄𝑧1

= 1 (231)

Then its clear that

−𝜋𝛼′𝜂𝜇𝜈𝛿2(𝑧1 − 𝑧2, ̄𝑧1 − ̄𝑧2) + 𝛼′

2 𝜂𝜇𝜈2𝜋𝛿2(𝑧1 − 𝑧2, ̄𝑧1 − ̄𝑧2) = 0 (232)

3.6 The operator product expansion

We now begin the most important section in conformal field theory. We will talk about
the product operator expansion. Lets discuss the central problemwe are trying to solve
in CFT. We want to be able to find the expectation value of a product of local operators

⟨𝑂𝑖1(𝑧1, ̄𝑧1) 𝑂𝑖2(𝑧2, ̄𝑧2) ... 𝑂𝑖𝑛(𝑧𝑛, ̄𝑧𝑛)⟩ (233)
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Let us first look at a similiar case where we have only a single product.

𝑂𝑖(𝑧, ̄𝑧)𝑂𝑗(𝑤, 𝑤̄) (234)

Where 𝑂𝑖 denotes a specific operator and ’i’ runs over all operators. Note that there is
actually an infinite amount of local operators that can be constructed so i runs to infinity.
W sometimes call these operators fields by convention (although not to be confused
with QFT fields). We can write (234) that are close together can be approximated by a
sum of operators at one of the points. In other words...

𝑂𝑖(𝑧, ̄𝑧)𝑂𝑗(𝑤, 𝑤̄) = ∑
𝑘

𝐶𝑘
𝑖𝑗(𝑧 − 𝑤, ̄𝑧 − 𝑤̄)𝑂𝑘(𝑤, 𝑤̄) (235)

Note that we now only have a sum of one operator on the right evaluated at one space-
time point. Now, the 𝐶𝑘

𝑖𝑗 is actually a set of functions not just constants. We can add
as many as many insertions to the left and right hand side of (235) as we want like fol-
lows...

⟨𝑂𝑖(𝑧, ̄𝑧)𝑂𝑗(𝑤, 𝑤̄)...⟩ = ∑
𝑘

𝐶𝑘
𝑖𝑗(𝑧 − 𝑤, ̄𝑧 − 𝑤̄) ⟨𝑂𝑘(𝑤, 𝑤̄)...⟩ (236)

Where the ... represents insertions of other operators.

𝑋𝜇 Theory Example

We shall now do an example of a 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) product. Lets begin by using
(224) an rewriting it like follows

∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶= 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) + 𝛼′

2 𝜂𝜇𝜈 ln |𝑧12|2

⇒ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) = −𝛼′

2 𝜂𝜇𝜈 ln |𝑧12|2− ∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶
(237)

Okay now we know that

𝜕1 ̄𝜕1 ∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶= 0 (238)

What does this mean? It means that the thing inside is harmonic since its completely
annihilated by the holomorphic and anti-holomorphic derivative operators. That im-
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plies we can express the inside as a sum of holomorphic and anti-holomorphic parts.
Specifically we can taylor expand them around 𝑧2 to find the OPE. Note that the 𝑧2 vari-
ables are held constant here in (238). So we can conclude that...

∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶= 𝐹(𝑧12) + 𝐺( ̄𝑧12) (239)

Where F is holomorphic and G is anti holomorphic. We also wish to center the OPE at
𝑧2.

∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶=
∞
∑
𝑘=0

1
𝑘!𝐹

(𝑘)(𝑧2) × (𝑧1 − 𝑧2)𝑘 + 1
𝑘!𝐺

(𝑘)( ̄𝑧2) × ( ̄𝑧1 − ̄𝑧2)𝑘

=∶ 𝑋𝜇𝑋𝜈(𝑧2, ̄𝑧2) ∶ +
∞
∑
𝑘=1

1
𝑘!𝜕

𝑘 ∶ 𝑋𝜇(𝑧2, ̄𝑧2)𝑋𝜈 ∶ (𝑧1 − 𝑧2)𝑘 + 1
𝑘!

̄𝜕𝑘 ∶ 𝑋𝜇(𝑧2, ̄𝑧2)𝑋𝜈 ∶ ( ̄𝑧1 − ̄𝑧2)𝑘

=∶ 𝑋𝜇𝑋𝜈(𝑧2, ̄𝑧2) ∶ +
∞
∑
𝑘=1

1
𝑘! ∶ [𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2)]𝑋𝜈 ∶ (𝑧12)𝑘 + 1

𝑘! ∶ [ ̄𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2)]𝑋𝜈 ∶ ( ̄𝑧12)𝑘

(240)
Where it’s clear this is merely two taylor expansions expanded around 𝑧2 and ̄𝑧2 respec-
tively. Now.. remember that the 𝑋𝜈 term is held constant in this expression since we
are expanding via the harmonic property with 𝜕1 and ̄𝜕1 not 𝜕2. Now lets clean it up a
little.

∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶=∶ 𝑋𝜇𝑋𝜈(𝑧2, ̄𝑧2) ∶

+
∞
∑
𝑘=1

(𝑧12)𝑘

𝑘! ∶ [𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2)]𝑋𝜈 ∶ +( ̄𝑧12)𝑘

𝑘! ∶ [ ̄𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2)]𝑋𝜈 ∶
(241)

Now in this case ∶ 𝑋𝜇𝑋𝜈 ∶=∶ 𝑋𝜈𝑋𝜇 ∶ So we can simplify this further to make it clear that
we are differentiating wrt just one of the variables.

∶ 𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) ∶=∶ 𝑋𝜈𝑋𝜇(𝑧2, ̄𝑧2) ∶

+
∞
∑
𝑘=1

(𝑧12)𝑘

𝑘! ∶ 𝑋𝜈𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2) ∶ +( ̄𝑧12)𝑘

𝑘! ∶ 𝑋𝜈 ̄𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2) ∶
(242)
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Finally lets combine this with (237) to complete the derivation of the OPE

𝑋𝜇(𝑧1, ̄𝑧1)𝑋𝜈(𝑧2, ̄𝑧2) = −𝛼′

2 𝜂𝜇𝜈 ln |𝑧12|2− ∶ 𝑋𝜈𝑋𝜇(𝑧2, ̄𝑧2) ∶

+
∞
∑
𝑘=1

(𝑧12)𝑘

𝑘! ∶ 𝑋𝜈𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2) ∶ +( ̄𝑧12)𝑘

𝑘! ∶ 𝑋𝜈 ̄𝜕𝑘𝑋𝜇(𝑧2, ̄𝑧2) ∶
(243)

This completes the derivation of the OPE for the product 𝑋𝜇𝑋𝜈 where both of these
operators are close together. In a sense, anOPE can be thought of as the taylor expansion
in our new language for CFTs. We will now explore a few more properties.

3.7 Ward identity

Lets consider a fieldwith an appropiate action S[𝜙]with an appropriate D-dimensional
spacetime.
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