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1 Action Principals

1.1 The Relativistic point particle

We begin our discussion with the model of a point particle that is subject to relativistic effects. Such a
particle traces out a line in spacetime known as the worldline. We know that the length of this world line
is given by the equation

𝑑𝑠2 = −𝑑𝑋𝜇𝑔𝜇𝜈𝑑𝑋𝜈 (1)

Where 𝜇 and 𝜈 = 0, 1, 2, ..., 𝐷. D is the dimension of spacetime 𝑔𝜇𝜈 is the spacetime metric tensor and
’ds’ is the proper length. The simplest lorentz invarient action we can write for this particle would be
proportional to the proper length

𝑆 = −𝑚𝑐 ∫ 𝑑𝑠 (2)

Where ’mc’ is here for dimensional purposes. We can then write

𝑆 = −𝑚𝑐 ∫ √−𝑑𝑋𝜇𝑔𝜇𝜈𝑑𝑋𝜈

= −𝑚𝑐 ∫ √−𝑑𝑋𝜇

𝑑𝑡 𝑑𝑡𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝑡 𝑑𝑡
(3)

If we assume that spacetime is flat then we write

𝑆 = −𝑚𝑐 ∫ 𝑑𝑡√−𝑑𝑋𝜇

𝑑𝑡 𝜂𝜇𝜈
𝑑𝑋𝜈

𝑑𝑡

= −𝑚𝑐 ∫ 𝑑𝑡√−𝑑𝑋𝜇

𝑑𝑡
𝑑𝑋𝜇
𝑑𝑡

(4)

Now if we contract the 0th term we can simply the action to the following quantity

= −𝑚𝑐2 ∫ 𝑑𝑡√1 − 𝑑𝑋𝑖

𝑑𝑡
𝑑𝑋𝑖
𝑑𝑡

= −𝑚𝑐2 ∫ 𝑑𝑡√1 − 𝑣2

𝑐2

(5)

Where 𝑣2 is the D-dimensional velocity squared. We can easily show that this reduces to the classical
lagrangian in the non-relativitic limit.

𝐿 = −𝑚𝑐2 ∫ 𝑑𝑡√1 − 𝑣2

𝑐2

≈ −𝑚𝑐2(1 − 1
2

𝑣2

𝑐2 ) = 1
2𝑚𝑣2 + constant

(6)

So it reduces to the classical result in the non relativitic limit.
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1.2 World Sheets and Nambu–Goto action

Now let us consider modeling a relativistic string. The simplest action we can construct would be pro-
portional to the proper area traced out in spacetime by the string. This is called the Nambu-Goto action.
We will begin by considering the proper area in General Relativity.

In General Relativity the proper area is given by the corresponding formula.

𝐴 = ∫ 𝑑𝜏𝑑𝜎√−det(𝑔𝑎𝑏) (7)

Here we have chosen Tau and sigma as parameterizations. Tau does not necessarily represent the proper
time. Now there are a few caveats we need to take care of later. First lets motivate this result by consider
breaking up the ’world sheet’ into rectangles. Seeing how we are working with vectors, it makes sense
to break it up into parallelograms by considering the identity in linear algebra.

𝑑𝐴 = |𝑑𝑣1 × 𝑑𝑣2| = |𝑑𝑣1||𝑑𝑣2|| sin(𝜃)| = 𝑑𝑣1||𝑑𝑣2||√1 − cos2(𝜃)| (8)

𝑑𝐴 = √|𝑑𝑣1|2|𝑑𝑣2|2 − |𝑑𝑣1|2|𝑑𝑣2|2 cos2(𝜃)| (9)

Now we know that dv1 and dv2 should be in different directions. We shall write this in terms of the
tensor function 𝑋𝜇(𝜏, 𝜎) that represents the parametrized world-sheet. We will assign the value dv1
to 𝑑𝑋𝜇

𝑑𝜏 𝑑𝜏 and dv1 to 𝑑𝑋𝜇

𝑑𝜎 𝑑𝜎 where sigma and tau are used to parametrize the world sheet. Now this
prodcues the following result

𝑑𝐴 = √(𝑑𝜏2 𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏 )(𝑑𝜎2 𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎 ) − 𝑑𝜏2𝑑𝜎2(𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎 )2

= 𝑑𝜏𝑑𝜎√(𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏 )(𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎 ) − (𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎 )2

(10)

Now, if we believe equation (7) then we should be able to express equation (10) as the determinant of
some metric. By inspection we can write an induced metric ’h’ as the following.

ℎ𝛼𝛽 = ⎛⎜⎜⎜
⎝

𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜏
𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎
𝑑𝑋𝜇

𝑑𝜏 𝑔𝜇𝜈
𝑑𝑋𝜈

𝑑𝜎
𝑑𝑋𝛼

𝑑𝜎 𝑔𝛼𝛽
𝑑𝑋𝛽

𝑑𝜎

⎞⎟⎟⎟
⎠

= 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜈𝑔𝜇𝜈

= 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

(11)

And all together the Nambu-Goto action becomes.

𝑆 = −𝑇 ∫ 𝑑𝜏𝑑𝜎√−det(ℎ𝛼𝛽) (12)

Where the scaler ’-T’ is introduced for dimensional purposes. And the negative inside the square root
comes as a consequence of the Pseudo-Riemannian spacewhich ensures the determinantwill be negative.
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Equation (11) is the known as the induced metric. It shouldn’t come as a surprise that we are now
working with twometrics, since our strings are manifolds themselves. It also shouldn’t be a surprise that
the metric can be expressed as a 2x2 matrix since our world-sheet traces a two dimensional surface. The
second equal sign in equation (11) can be easily checked to be true.

Now there is actually a problem with this action. The problems stems from renormalization, namely,
the square root makes renomrlaization difficult. Correcting this problem requires us to rewrite the
Nambu-Goto action using what is known as the auxillary world sheet metric. It is a metric that clas-
sically reduces the action to the Nambu-Goto action. This new action in terms of the auxiliary world
sheet metric is known as the Polyakov action which is given by

𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (13)

Where the 𝛾𝛼𝛽 represents the auxiliary world sheet metric with both indices raised and the 𝛾 = det(𝛾𝛼𝛽).
This corrects the issue and makes the theory renormalizable. The scaler at the begining is there for
dimensional purposes.

We now wish to show that this indeed reduces to equation (12) at the classical level. To show this we
will find variation of the action with respect to the inverse world-sheet metric 𝛾𝛼𝛽

𝛿𝑆
𝛿𝛾𝛼𝛽 = 0 (14)

To accomplish this, we begin by finding the variation of equation (13)

𝛿𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 − 1

4𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎 (−𝛾)
1
2 𝛿(𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

(15)

Using the following identity
𝛿𝛾 = −𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽 (16)

Which in our case implies that following relationship

𝛿√−𝛾 = −1
2√−𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽 (17)

Going back to equation (15) its easy to see that

𝛿𝑆 = 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎 1

2√−𝛾𝛾𝛼𝛽𝛿𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎 (−𝛾)

1
2 𝛿(𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

= 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿𝛾𝛼𝛽 1

2√−𝛾𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿𝛾𝛼𝛽(−𝛾)

1
2 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇

= 0

(18)
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Dividing equation (18) by 𝛿𝛾𝛼𝛽 and canceling out the constants gives the equation of motion for the
metric. In other words, it’s easy to see that 𝛿𝑆

𝛿𝛾𝛼𝛽 = 0 implies the following relationship.

1
2𝛾𝛼𝛽𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 = 𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (19)

From here we can take the negative square root of the determinant from both sides wrt to the alpha and
beta tensor,

1
2(−𝛾)

1
2 𝛾𝜅𝜂𝜕𝜅𝑋𝜇𝜕𝜂𝑋𝜇 = √−det(𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇) (20)

But the right side is just the integrand of the Nambu-Goto action and the left side is the integrand of the
Polyakov action. Therefore the equation of motion for the world sheet metric 𝛾𝛼𝛽 implies the Nambu-
Goto action. QED.

Now notice that we never explicitly defined a value for the world-sheet metric 𝛾𝛼𝛽. This is to preserve
the symmetries in the Polyakov action. Namely, these symmetries allows us to perform gauge fixingwith
the only requirement being that equation (19) is satisfied. We will now explore these symmetries in the
next section to see which quantities we are allowed to gauge fix.

1.3 Symmetries in the Polyakov action

We would now like to talk about the symmetries in the Polyakov action

𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (21)

...for which there are a lot. However, for now, lets restrict our analysis to that of Minkowski space. The
Polyavok action is invarient under the following transformations
Poincare Transformation

𝑋′𝜇 = 𝛬𝜇
𝜈 𝑋𝜈 + 𝑎𝜇 (22)

𝛿𝛾𝛼𝛽 = 0 (23)

Where 𝛬 is a Lorentz transformation and a 𝑎𝜇 is a translation. Poincare invariance is a global symmetry
in the action which implies it cannot be used for gauge fixing.
Diffeomorphism invariance

𝑋′𝜇(𝜏′, 𝜎 ′) = 𝑋𝜇(𝜏, 𝜎) (24)

𝜕𝜎 ′𝑐

𝜕𝜎𝑎
𝜕𝜎 ′𝑑

𝜕𝜎𝑏 𝛾′
𝑐𝑑(𝜏′, 𝜎 ′) = 𝛾𝑎𝑏(𝜏, 𝜎) (25)

for some new choice of coordinates 𝜎 ′𝑎(𝜏, 𝜎). Equation (24) is also known as reparameterization invari-
ance. This is an very important property of string theory so be sure to understand it. While equation
(25) is nothing more than the tensor transformation law. Diffeomorphism invarice is a local symmetry
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which implies it allows for gauge fixing.
Weyl invariance

𝑋′𝜇(𝜏, 𝜎) = 𝑋𝜇(𝜏, 𝜎) (26)

𝛾′
𝑎𝑏(𝜏, 𝜎) = 𝑒2𝜔(𝜏,𝜎)𝛾𝑎𝑏(𝜏, 𝜎) (27)

which holds for any 𝜔(𝜏, 𝜎) . This is also a local gauge symmetry, which implies that it can be used for
gauge fixing.

This concludes the relevant symmetries in the Polyavok action. While in the future, we will talk more
about the implication of these symmetries and treat them asmore fundamental then the Polyakov action,
for now they are simply symmetries in the Polyakov action.

1.4 Equations of motion and Boundary conditions

The goal of this section is find the equation of motion for 𝑋𝜇 in the Polyakov action.

𝑆[𝑋𝜇, 𝛾𝛼𝛽] = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇 (28)

We will now take the variation wrt to 𝑋𝜇. Where the goal is to find equation of motion by demanding
that

𝛿𝑆
𝛿𝑋𝜇 = 0 (29)

Taking the variation

𝛿𝑆 = − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎𝛿((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝑋𝜇𝜕𝛽𝑋𝜇)

= − 1
4𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 − 1

4𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎 (−𝛾)
1
2 (𝛾𝛼𝛽)𝜕𝛼𝑋𝜇𝜕𝛽𝛿𝑋𝜇

(30)

Where we used the easy to show identity 𝛿𝜕𝑎𝑋𝜇 = 𝜕𝑎𝛿𝑋𝜇. By relabeling the indices we can combine
them into a singal integral. (Specifically, we use the symmetry in the metric tensor)

𝛿𝑆 = − 1
2𝜋𝛼′ ∫

𝑀
𝑑𝜏𝑑𝜎(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 (31)

Now from here we manipulate the integrand using the identity

(−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛼𝛿𝑋𝜇𝜕𝛽𝑋𝜇 = 𝜕𝛼((−𝛾)

1
2 𝛾𝛼𝛽𝛿𝑋𝜇𝜕𝛽𝑋𝜇) − 𝛿𝑋𝜇𝜕𝛼((−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇) (32)

Where this can be understood to be an integration by parts. Note that distributing the derivatives on the
right side will equal the left side. Now, you may be familiar that the term

𝜕𝛼((−𝛾)
1
2 𝛾𝛼𝛽𝛿𝑋𝜇𝜕𝛽𝑋𝜇) = 0 (33)
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is usually understood to vanish since it is a total derivative inside the action. Actually it vanishes due to
the boundary conditions on the string, but we will just assume it to be zero for now

From here, we are left with the action (after dividing by 𝛿𝑋𝜇)

𝛿𝑆
𝛿𝑋𝜇 = 1

2𝜋𝛼′ ∫
𝑀

𝑑𝜏𝑑𝜎𝜕𝛼((−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇) = 0 (34)

The equation of motion is understood to mean the following equations

𝜕𝛼(−𝛾)
1
2 𝛾𝛼𝛽𝜕𝛽𝑋𝜇 = 0 (35)

Along with
(−𝛾)

1
2 𝛾𝛼𝛽𝜕𝛼𝜕𝛽𝑋𝜇 = (−𝛾)

1
2 𝜕𝛼𝜕𝛼𝑋𝜇 = 0

= (−𝛾)
1
2 𝜕𝛼𝜕𝛼𝑋𝜈𝑔𝜇𝜈 = 𝑔𝜇𝜈 ∗ 0

= (−𝛾)
1
2 𝜕𝛼𝜕𝛼𝑋𝜇 = (−𝛾)

1
2 ∇2𝑋𝜇 = 0

(36)

This along with the previous section complete the equations of motion for the Polyakov action at this
state. Its worth noting that there are a few terms that can be added to the Polyakov action that, although
break Poincare invariance, are worth exploring. We will discuss these later.

Lets now talk about boundary conditions. There are two types of strings that are constructed from var-
ious boundary conditions. The two types are open strings and closed strings. Intuitively, we can think
of closed strings as being topologically a circle and an open string as being topologically a line interval.
Let us now discuss these boundary conditions.

For these conditions we will choose a parametrization for 𝜎 such that it lies inside the interval 0 ≤
𝜎 ≤ 𝜋. This is an arbritrary choice that is done for the sake of simplifying the analysis of the boundary
conditions.
Closed String

𝑋𝜇(𝜏, 𝜎) = 𝑋(𝜏, 𝜎 + 𝜋) (37)

This is a period condition that simply ensures the string is closed everywhere.
Open String with Neumann boundary conditions

𝜕𝑋𝜇

𝜕𝜎 = 0 At 𝜎 = 0, 𝜋 (38)

This consequence of this condition is that the component of momentum normal to the worldsheet van-
ishes at the boundary.
Open String with Dirichlet Boundary condition

𝑋𝜇|𝜎=0 = 𝑋𝜇
0 (39)
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𝑋𝜇|𝜎=𝜋 = 𝑋𝜇
𝜋 (40)

Where 𝑋𝜇
0 and 𝑋𝜇

𝜋 are constants. This condition applies for 𝜇 = 1, 2, 3..𝐷−𝑝−1 where d is the dimension
of the theoy p is a p-dimensional subspace of the theory. We will talk more about Dp branes later.

1.5 Light Cone coordinates

The purpose of this section construct an easier set of coordintates to solve the equations of motion. These
are known as light cone coordinates and they are merlely a new set of coordinates to makes solving our
theory easier. In General relativity. we define the light cone component for any vector 𝑎𝜇 as the following

𝑎+ ≡ 1
√2

(𝑎0 + 𝑎1) (41)

and
𝑎− ≡ 1

√2
(𝑎0 − 𝑎1) (42)

we let the rest of the indices run from i = 2,...,D

𝑎𝑖 runs from i = 2, . . . , D (43)

We can also define coordinates with ’lowered’ as the following

𝑎+ ≡ −𝑎− (44)

and
𝑎− ≡ −𝑎+ (45)

These new coordinates are usually examined in a special frame such that the contractions are done as
follows

𝑎𝜇𝑏𝜇 = −𝑎+𝑏− − 𝑎−𝑏+ + 𝑎𝑖𝑏𝑖

= 𝑎−𝑏− + 𝑎+𝑏+ + 𝑎𝑖𝑏𝑖
(46)

Where we choose metric such that 𝑎𝑖 = 𝑎𝑖

Back to string theory, we introduce world-sheet light cone coordinates defined by

𝜎± = 𝜏 ± 𝜎 and 𝜕± = 1
2(𝜕𝜏 ± 𝜕𝜎) (47)

Along with the metric
⎛⎜⎜⎜
⎝

𝜂++ 𝜂+−

𝜂−+ 𝜂−−

⎞⎟⎟⎟
⎠

= −1
2

⎛⎜⎜⎜
⎝

0 1
1 0

⎞⎟⎟⎟
⎠

(48)

We will now discuss solutions to the Equations of motion
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2 Conformal Field Theory
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